[Sur la fonction de Bellman pour des problèmes extrémaux sur lʼespace BMO]
Dans cette Note, nous décrivons nos résultats sur la construction de la fonction de Bellman qui résout un problème extrémal pour une grande classe de formes linéaires intégrales sur BMO.
In this Note we describe our results on construction of the Bellman function solving an extremal problem for a large class of integral functionals on BMO.
Accepté le :
Publié le :
Paata Ivanishvili 1, 2 ; Nikolay N. Osipov 1, 3 ; Dmitriy M. Stolyarov 1, 3 ; Vasily I. Vasyunin 3 ; Pavel B. Zatitskiy 1, 3
@article{CRMATH_2012__350_11-12_561_0, author = {Paata Ivanishvili and Nikolay N. Osipov and Dmitriy M. Stolyarov and Vasily I. Vasyunin and Pavel B. Zatitskiy}, title = {On {Bellman} function for extremal problems in {BMO}}, journal = {Comptes Rendus. Math\'ematique}, pages = {561--564}, publisher = {Elsevier}, volume = {350}, number = {11-12}, year = {2012}, doi = {10.1016/j.crma.2012.06.011}, language = {en}, }
TY - JOUR AU - Paata Ivanishvili AU - Nikolay N. Osipov AU - Dmitriy M. Stolyarov AU - Vasily I. Vasyunin AU - Pavel B. Zatitskiy TI - On Bellman function for extremal problems in BMO JO - Comptes Rendus. Mathématique PY - 2012 SP - 561 EP - 564 VL - 350 IS - 11-12 PB - Elsevier DO - 10.1016/j.crma.2012.06.011 LA - en ID - CRMATH_2012__350_11-12_561_0 ER -
%0 Journal Article %A Paata Ivanishvili %A Nikolay N. Osipov %A Dmitriy M. Stolyarov %A Vasily I. Vasyunin %A Pavel B. Zatitskiy %T On Bellman function for extremal problems in BMO %J Comptes Rendus. Mathématique %D 2012 %P 561-564 %V 350 %N 11-12 %I Elsevier %R 10.1016/j.crma.2012.06.011 %G en %F CRMATH_2012__350_11-12_561_0
Paata Ivanishvili; Nikolay N. Osipov; Dmitriy M. Stolyarov; Vasily I. Vasyunin; Pavel B. Zatitskiy. On Bellman function for extremal problems in BMO. Comptes Rendus. Mathématique, Volume 350 (2012) no. 11-12, pp. 561-564. doi : 10.1016/j.crma.2012.06.011. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.06.011/
[1] Bellman function for extremal problems in BMO, 2012 (preprint) | arXiv
[2] Sharp
[3] Sharp results in the integral-form John–Nirenberg inequality, Trans. Amer. Math. Soc., Volume 363 (2011) no. 8, pp. 4135-4169 (preprint, 2007) | arXiv
[4] The sharp constant in the John–Nirenberg inequality, 2003 http://www.pdmi.ras.ru/preprint/2003/index.html (preprint POMI, No. 20)
[5] Mutual estimates of
[6] Sharp constants in the classical weak form of the John–Nirenberg inequality, 2011 http://www.pdmi.ras.ru/preprint/2011/eng-2011.html (preprint POMI, No. 10)
[7] Monge–Ampère equation and Bellman optimization of Carleson embedding theorems, Amer. Math. Soc. Transl. Ser. 2, Volume 226 (2009), pp. 195-238
[8] Sharp constants in the classical weak form of the John–Nirenberg inequality, 2012 (preprint) | arXiv
- On locally concave functions on simplest nonconvex domains, Journal of Mathematical Sciences (New York), Volume 282 (2024) no. 4, pp. 482-510 | DOI:10.1007/s10958-024-07194-x | Zbl:1542.42010
- Some extremal problems for martingale transforms. I, Journal of Mathematical Sciences (New York), Volume 284 (2024) no. 6, pp. 735-766 | DOI:10.1007/s10958-024-07387-4 | Zbl:1552.60088
- Sharp moment estimates for martingales with uniformly bounded square functions, Mathematische Zeitschrift, Volume 302 (2022) no. 1, pp. 181-217 | DOI:10.1007/s00209-022-03064-x | Zbl:1512.60026
- Sharp transference principle for BMO and
, Journal of Functional Analysis, Volume 281 (2021) no. 6, p. 21 (Id/No 109085) | DOI:10.1016/j.jfa.2021.109085 | Zbl:1467.42036 - Bellman function for extremal problems in BMO. II: Evolution, Memoirs of the American Mathematical Society, 1220, Providence, RI: American Mathematical Society (AMS), 2018 | DOI:10.1090/memo/1220 | Zbl:1405.42046
- Sharpening Hölder's inequality, Journal of Functional Analysis, Volume 275 (2018) no. 5, pp. 1280-1319 | DOI:10.1016/j.jfa.2018.05.003 | Zbl:1401.26031
- The John-Nirenberg constant of
, , St. Petersburg Mathematical Journal, Volume 28 (2017) no. 2, pp. 181-196 | DOI:10.1090/spmj/1445 | Zbl:1356.42001 - Theory of locally concave functions and its applications to sharp estimates of integral functionals, Advances in Mathematics, Volume 291 (2016), pp. 228-273 | DOI:10.1016/j.aim.2015.11.048 | Zbl:1346.49056
- Inequalities for BMO on α-Trees, International Mathematics Research Notices, Volume 2016 (2016) no. 13, p. 4078 | DOI:10.1093/imrn/rnv258
- Bellman vs. Beurling: sharp estimates of uniform convexity for
spaces, St. Petersburg Mathematical Journal, Volume 27 (2016) no. 2, pp. 333-343 | DOI:10.1090/spmj/1390 | Zbl:1358.46014 - Sharp estimates for Lipschitz class, The Journal of Geometric Analysis, Volume 26 (2016) no. 2, pp. 1346-1369 | DOI:10.1007/s12220-015-9593-7 | Zbl:1342.26007
- Bellman function for extremal problems in BMO, Transactions of the American Mathematical Society, Volume 368 (2016) no. 5, pp. 3415-3468 | DOI:10.1090/tran/6460 | Zbl:1346.42003
- Inequality for Burkholder’s martingale transform, Analysis PDE, Volume 8 (2015) no. 4, p. 765 | DOI:10.2140/apde.2015.8.765
- Sharp inequalities for BMO functions, Chinese Annals of Mathematics. Series B, Volume 36 (2015) no. 2, pp. 225-236 | DOI:10.1007/s11401-015-0887-7 | Zbl:1319.42018
- Sharp estimates of integral functionals on classes of functions with small mean oscillation, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 353 (2015) no. 12, pp. 1081-1085 | DOI:10.1016/j.crma.2015.07.016 | Zbl:1338.42031
- An example of constructing a Bellman function for extremal problems in BMO, Journal of Mathematical Sciences (New York), Volume 209 (2015) no. 5, pp. 683-742 | DOI:10.1007/s10958-015-2521-3 | Zbl:1332.49018
- Weak integral conditions for BMO, Proceedings of the American Mathematical Society, Volume 143 (2015) no. 7, pp. 2913-2926 | DOI:10.1090/s0002-9939-2015-12424-0 | Zbl:1314.42023
- Sharp estimates involving
and constants, and their applications to PDE, St. Petersburg Mathematical Journal, Volume 26 (2015) no. 1, pp. 27-47 | DOI:10.1090/s1061-0022-2014-01329-5 | Zbl:1325.42029 - Survey article: Bellman function method and sharp inequalities for martingales, Rocky Mountain Journal of Mathematics, Volume 43 (2013) no. 6, pp. 1759-1823 | DOI:10.1216/rmj-2013-43-6-1759 | Zbl:1286.60039
- On Bellman function for extremal problems in BMO, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 350 (2012) no. 11-12, pp. 561-564 | DOI:10.1016/j.crma.2012.06.011 | Zbl:1247.42018
Cité par 20 documents. Sources : Crossref, zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier