Consider an imaginary quadratic number field , with m a square-free positive integer, and its ring of integers . The Bianchi groups are the groups . Further consider the Borel–Serre compactification [7] (1970) of the quotient of hyperbolic 3-space by a finite index subgroup Γ in a Bianchi group, and in particular the following question which Serre posed on p. 514 of the quoted article. Consider the map α induced on homology when attaching the boundary into the Borel–Serre compactification. How can one determine the kernel of α (in degree 1)? of the kernel of α. In the quoted article, Serre did add the question what submodule precisely this kernel is. Through a local topological study, we can decompose the kernel of α into its parts associated to each cusp.
Considérons un corps quadratique imaginaire , où m est un entier positif ne contenant pas de carré, et son anneau dʼentiers . Les groupes de Bianchi sont les groupes . Puis, nous considérons la compactification de Borel–Serre [7] (1970) du quotient de lʼespace hyperbolique à trois dimensions par un sous-groupe Γ dʼindice fini dans un groupe de Bianchi, et en particulier la question suivante que Serre posait sur la p. 514 de lʼarticle cité. Considérons lʼapplication α induite en homologie quand le bord est attaché dans la compactification de Borel–Serre. Comment peut-on déterminer le noyau de α (en degré 1) ? Serre se servait dʼun argument topologique global et obtenait le rang du noyau de α. Dans lʼarticle cité, Serre rajoutait la question de quel sous-module précisément il sʼagit pour ce noyau. A travers dʼune étude topologique locale, nous pouvons décomposer le noyau de α dans ses parties associées à chacune des pointes.
Accepted:
Published online:
Alexander D. Rahm 1
@article{CRMATH_2012__350_15-16_741_0, author = {Alexander D. Rahm}, title = {On a question of {Serre}}, journal = {Comptes Rendus. Math\'ematique}, pages = {741--744}, publisher = {Elsevier}, volume = {350}, number = {15-16}, year = {2012}, doi = {10.1016/j.crma.2012.09.001}, language = {en}, }
Alexander D. Rahm. On a question of Serre. Comptes Rendus. Mathématique, Volume 350 (2012) no. 15-16, pp. 741-744. doi : 10.1016/j.crma.2012.09.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.09.001/
[1] Sui gruppi di sostituzioni lineari con coefficienti appartenenti a corpi quadratici immaginarî, Math. Ann., Volume 40 (1892) no. 3, pp. 332-412
[2] Groups Acting on Hyperbolic Space, Springer Monographs in Mathematics, Springer-Verlag, 1998
[3] Algebraic Theory of the Bianchi Groups, Monographs and Textbooks in Pure and Applied Mathematics, vol. 129, Marcel Dekker Inc., 1989
[4] The Arithmetic of Hyperbolic 3-Manifolds, Graduate Texts in Mathematics, vol. 219, Springer-Verlag, 2003
[5] Mémoire sur les groupes kleinéens, Acta Math., Volume 3 (1883) no. 1, pp. 49-92
[6] The integral homology of of imaginary quadratic integers with nontrivial class group, J. Pure Appl. Algebra, Volume 215 (2011) no. 6, pp. 1443-1472
[7] Le problème des groupes de congruence pour , Ann. of Math. (2), Volume 92 (1970), pp. 489-527
[8] Generators and relations for certain special linear groups, Advances in Math., Volume 6 (1971), pp. 1-77
[9] Rational homology of Bianchi groups, Math. Ann., Volume 272 (1985) no. 3, pp. 399-419
Cited by Sources:
Comments - Policy