Dans cette Note, nous étudions la synchronisation exacte dʼun système couplé dʼéquations des ondes par des contrôles frontières de Dirichlet et diverses idées connexes sont introduites. En utilisant la nulle contrôlabilité exacte dʼun système réduit couplé, et sous certaines conditions de compatibilité, nous avons établi la synchronisation exacte, la synchronisation exacte par groupes, et la nulle contrôlabilité et la synchronisation exacte par groupes, au moyen de contrôles convenables.
In this Note, the exact synchronization for a coupled system of wave equations with Dirichlet boundary controls and some related concepts are introduced. By means of the exact null controllability of a reduced coupled system, under certain conditions of compatibility, the exact synchronization, the exact synchronization by groups, and the exact null controllability and synchronization by groups are all realized by suitable boundary controls.
Accepté le :
Publié le :
Tatsien Li 1, 2 ; Bopeng Rao 3
@article{CRMATH_2012__350_15-16_767_0, author = {Tatsien Li and Bopeng Rao}, title = {Synchronisation exacte d'un syst\`eme coupl\'e d'\'equations des ondes par des contr\^oles fronti\`eres de {Dirichlet}}, journal = {Comptes Rendus. Math\'ematique}, pages = {767--772}, publisher = {Elsevier}, volume = {350}, number = {15-16}, year = {2012}, doi = {10.1016/j.crma.2012.09.007}, language = {fr}, }
TY - JOUR AU - Tatsien Li AU - Bopeng Rao TI - Synchronisation exacte dʼun système couplé dʼéquations des ondes par des contrôles frontières de Dirichlet JO - Comptes Rendus. Mathématique PY - 2012 SP - 767 EP - 772 VL - 350 IS - 15-16 PB - Elsevier DO - 10.1016/j.crma.2012.09.007 LA - fr ID - CRMATH_2012__350_15-16_767_0 ER -
%0 Journal Article %A Tatsien Li %A Bopeng Rao %T Synchronisation exacte dʼun système couplé dʼéquations des ondes par des contrôles frontières de Dirichlet %J Comptes Rendus. Mathématique %D 2012 %P 767-772 %V 350 %N 15-16 %I Elsevier %R 10.1016/j.crma.2012.09.007 %G fr %F CRMATH_2012__350_15-16_767_0
Tatsien Li; Bopeng Rao. Synchronisation exacte dʼun système couplé dʼéquations des ondes par des contrôles frontières de Dirichlet. Comptes Rendus. Mathématique, Volume 350 (2012) no. 15-16, pp. 767-772. doi : 10.1016/j.crma.2012.09.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.09.007/
[1] A two-level energy method for indirect boundary observability and controllability of weakly coupled hyperbolic systems, SIAM J. Control Optim., Volume 42 (2003), pp. 871-906
[2] Stability theory of synchronized motion in coupled-oscillator systems, Progress of Theoretical Physics, Volume 69 (1983), pp. 32-47
[3] Horologium oscillatorium sive de motu pendulorum ad horologia aptato demonstrationes geometricae, Apud F. Muguet, Paris, 1673
[4] Strong (weak) exact controllability and strong (weak) exact observability for quasilinear hyperbolic systems, Chin. Ann. Math. Ser. B, Volume 31 (2010), pp. 723-742
[5] Asymptotic controllability for linear hyperbolic systems, Asymptotic Analysis, Volume 72 (2011), pp. 169-187
[6] Contrôlabilité Exacte, Perturbations et Stabilisation de Systèmes Distribués, vol. 1, Masson, Paris, 1988
[7] A spectral approach to the indirect boundary control of a system of weakly coupled wave equations, Discrete Contin. Dyn. Syst., Volume 23 (2009), pp. 399-414
[8] Optimal energy decay rate for partially damped systems by spectral compensation, SIAM J. Control Optim., Volume 45 (2006), pp. 1612-1632
[9] Observability of coupled systems, Acta Math. Hungar., Volume 103 (2004), pp. 321-348
- Exact internal controllability and exact internal synchronization for a kind of first order hyperbolic system, European Series in Applied and Industrial Mathematics (ESAIM): Control, Optimization and Calculus of Variations, Volume 30 (2024), p. 24 (Id/No 6) | DOI:10.1051/cocv/2024001 | Zbl:1536.93082
- On the local energy decay of the synchronizable solutions of a coupled wave equations system, Mathematical Methods in the Applied Sciences, Volume 47 (2024) no. 8, pp. 6903-6908 | DOI:10.1002/mma.9948 | Zbl:1551.35279
- Exact boundary synchronization by groups for a kind of system of wave equations coupled with velocities, Chinese Annals of Mathematics. Series B, Volume 44 (2023) no. 1, pp. 17-34 | DOI:10.1007/s11401-023-0002-4 | Zbl:1508.93040
- Exact boundary controllability of weak solutions for a kind of first order hyperbolic system – the HUM method, Chinese Annals of Mathematics. Series B, Volume 43 (2022) no. 1, pp. 1-16 | DOI:10.1007/s11401-022-0300-2 | Zbl:1487.93014
- Uniqueness of solution to systems of elliptic operators and application to asymptotic synchronization of linear dissipative systems. II: case of multiple feedback dampings, Chinese Annals of Mathematics. Series B, Volume 43 (2022) no. 5, pp. 659-684 | DOI:10.1007/s11401-022-0352-3 | Zbl:1505.93192
- Exact boundary synchronization for a kind of first order hyperbolic system, European Series in Applied and Industrial Mathematics (ESAIM): Control, Optimization and Calculus of Variations, Volume 28 (2022), p. 27 (Id/No 34) | DOI:10.1051/cocv/2022031 | Zbl:1492.93021
- Exact boundary controllability and exact boundary synchronization for a coupled system of wave equations with coupled Robin boundary controls, European Series in Applied and Industrial Mathematics (ESAIM): Control, Optimization and Calculus of Variations, Volume 27 (2021), p. 29 (Id/No s7) | DOI:10.1051/cocv/2020047 | Zbl:1470.93026
- Generalized approximate boundary synchronization for a coupled system of wave equations, Mathematical Methods in the Applied Sciences, Volume 44 (2021) no. 7, pp. 5309-5325 | DOI:10.1002/mma.7111 | Zbl:1471.35196
- Uniform synchronization of an abstract linear second order evolution system, SIAM Journal on Control and Optimization, Volume 59 (2021) no. 4, pp. 2740-2755 | DOI:10.1137/20m1375310 | Zbl:1470.93071
- Exact boundary synchronization by groups for a coupled system of wave equations with coupled Robin boundary controls on a general bounded domain, SIAM Journal on Control and Optimization, Volume 59 (2021) no. 6, pp. 4457-4480 | DOI:10.1137/21m1397258 | Zbl:1475.93059
- Induced generalized exact boundary synchronizations for a coupled system of wave equations, Applied Mathematics. Series B (English Edition), Volume 35 (2020) no. 1, pp. 113-126 | DOI:10.1007/s11766-020-3913-9 | Zbl:1449.93008
- Generalized exact boundary synchronization for a coupled system of wave equations with Dirichlet boundary controls, Chinese Annals of Mathematics. Series B, Volume 41 (2020) no. 4, pp. 511-530 | DOI:10.1007/s11401-020-0214-9 | Zbl:1448.93145
- Partial approximate boundary synchronization for a coupled system of wave equations with Dirichlet boundary controls, Frontiers of Mathematics in China, Volume 15 (2020) no. 4, pp. 727-748 | DOI:10.1007/s11464-020-0848-7 | Zbl:1448.93255
- Determination of generalized exact boundary synchronization matrix for a coupled system of wave equations, Frontiers of Mathematics in China, Volume 14 (2019) no. 6, pp. 1339-1352 | DOI:10.1007/s11464-019-0798-0 | Zbl:1453.93028
- On the generalized exact boundary synchronization for a coupled system of wave equations, Mathematical Methods in the Applied Sciences, Volume 42 (2019) no. 18, pp. 7011-7029 | DOI:10.1002/mma.5806 | Zbl:1439.35320
- A note on the exact synchronization by groups for a coupled system of wave equations, Mathematical Methods in the Applied Sciences, Volume 38 (2015) no. 13, pp. 2803-2808 | DOI:10.1002/mma.3262 | Zbl:1332.35209
- A note on the exact synchronization by groups for a coupled system of wave equations, Mathematical Methods in the Applied Sciences, Volume 38 (2015) no. 2, pp. 241-246 | DOI:10.1002/mma.3062 | Zbl:1330.35245
- Asymptotic controllability and asymptotic synchronization for a coupled system of wave equations with Dirichlet boundary controls, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 351 (2013) no. 17-18, pp. 687-693 | DOI:10.1016/j.crma.2013.09.013 | Zbl:1276.93018
Cité par 18 documents. Sources : zbMATH
Commentaires - Politique