[Une variante robuste de NXFEM pour le problème dʼinterface]
Dans cette note, nous proposons une modification de NXFEM proposée dans Hansbo et Hansbo (2002) [4] pour le problème dʼinterface elliptique. Elle permet dʼobtenir la robuste à la fois par rapport à la géometrie du maillage coupé par lʼinterface et par rapport aux paramètres de diffusion.
In this note, we propose a modification of the NXFEM proposed in Hansbo and Hansbo (2002) [4] for the elliptic interface problem. It leads to a robust method not only with respect to the mesh-interface geometry, but also with respect to the diffusion parameters.
Accepté le :
Publié le :
Nelly Barrau 1 ; Roland Becker 1 ; Eric Dubach 1 ; Robert Luce 1
@article{CRMATH_2012__350_15-16_789_0, author = {Nelly Barrau and Roland Becker and Eric Dubach and Robert Luce}, title = {A robust variant of {NXFEM} for the interface problem}, journal = {Comptes Rendus. Math\'ematique}, pages = {789--792}, publisher = {Elsevier}, volume = {350}, number = {15-16}, year = {2012}, doi = {10.1016/j.crma.2012.09.018}, language = {en}, }
TY - JOUR AU - Nelly Barrau AU - Roland Becker AU - Eric Dubach AU - Robert Luce TI - A robust variant of NXFEM for the interface problem JO - Comptes Rendus. Mathématique PY - 2012 SP - 789 EP - 792 VL - 350 IS - 15-16 PB - Elsevier DO - 10.1016/j.crma.2012.09.018 LA - en ID - CRMATH_2012__350_15-16_789_0 ER -
Nelly Barrau; Roland Becker; Eric Dubach; Robert Luce. A robust variant of NXFEM for the interface problem. Comptes Rendus. Mathématique, Volume 350 (2012) no. 15-16, pp. 789-792. doi : 10.1016/j.crma.2012.09.018. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.09.018/
[1] A hierarchical NXFEM for fictitious domain simulations, Int. J. Numer. Meth. Engrg., Volume 86 (2011), pp. 549-559
[2] Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method, Appl. Numer. Math., Volume 62 (2012), pp. 328-341
[3] A discontinuous Galerkin method with weighted averages for advection–diffusion equations with locally small and anisotropic diffusivity, IMA J. Numer. Anal., Volume 29 (2009), pp. 235-256
[4] An unfitted finite element method, based on Nitscheʼs method, for elliptic interface problems, Comput. Methods Appl. Mech. Eng., Volume 191 (2002), pp. 5537-5552
[5] A finite element method on composite grids based on Nitscheʼs method, ESAIM, Math. Model. Numer. Anal., Volume 37 (2003), pp. 495-514
Cité par Sources :
Commentaires - Politique