[Sur le prolongement des courants S-plurisousharmoniques]
Dans cette Note, nous étudions le prolongement aux ensembles fermés des courants S-plurisousharmoniques négatifs.
In this Note we are interested in studying the extension of negative S-plurisubharmonic currents across closed sets.
Accepté le :
Publié le :
Ahmad K. Al Abdulaali 1
@article{CRMATH_2012__350_23-24_1023_0, author = {Ahmad K. Al Abdulaali}, title = {The extendability of {\protect\emph{S}-plurisubharmonic} currents}, journal = {Comptes Rendus. Math\'ematique}, pages = {1023--1026}, publisher = {Elsevier}, volume = {350}, number = {23-24}, year = {2012}, doi = {10.1016/j.crma.2012.10.032}, language = {en}, }
Ahmad K. Al Abdulaali. The extendability of S-plurisubharmonic currents. Comptes Rendus. Mathématique, Volume 350 (2012) no. 23-24, pp. 1023-1026. doi : 10.1016/j.crma.2012.10.032. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.10.032/
[1] A.K. Al Abdulaali, The inductive wedge product of positive currents, preprint.
[2] Wedge product of positive currents and balanced manifolds, Tohoku Math. J. (2), Volume 60 (2008) no. 1, pp. 123-134
[3] Extension of plurisubharmonic currents, Math. Zeitschrift, Volume 245 (2003), pp. 455-481
[4] Pull-back currents by holomorphic maps, Manuscripta Math., Volume 123 (2007) no. 3, pp. 357-371
[5] Sur le prolongement des courants positifs fermés, Acta Math., Volume 153 (1984) no. 1–2, pp. 1-45 (in French)
[6] Removable singularities for positive currents, Amer. J. Math., Volume 96 (1974), pp. 67-78
[7] On the removal of singularities of analytic sets, Michigan Math. J., Volume 15 (1968), pp. 111-120
Cité par Sources :
Commentaires - Politique