[Ensembles minimaux des homéomorphismes R-fermés de surfaces]
Soit M une surface fermée connexe orientable sans bord et f un homéomorphisme de M. Supposons que lʼensemble soit fermé. Alors la suspension vérifie lʼune des conditions suivantes : 1) lʼadhérence dʼun élément est un tore ; 2) il existe un ensemble minimal qui nʼest pas localement connexe. De plus, on démontre que si lʼensemble dʼun homéomorphisme f dʼun espace compact métrisable est fermé, alors les sont fermés pour tout entier naturel k.
Let M be an orientable connected closed surface and f be a homeomorphism on M. Suppose that the set is closed. Then the suspension of f satisfies one of the following conditions: 1) the closure of each element of it is toral; 2) there is a minimal set which is not locally connected. Moreover, we show that if the set of a homeomorphism f on a compact metrizable space is closed, then so is for any natural number k.
Accepté le :
Publié le :
Tomoo Yokoyama 1
@article{CRMATH_2012__350_23-24_1051_0, author = {Tomoo Yokoyama}, title = {Minimal sets of {\protect\emph{R}-closed} surface homeomorphisms}, journal = {Comptes Rendus. Math\'ematique}, pages = {1051--1053}, publisher = {Elsevier}, volume = {350}, number = {23-24}, year = {2012}, doi = {10.1016/j.crma.2012.11.002}, language = {en}, }
Tomoo Yokoyama. Minimal sets of R-closed surface homeomorphisms. Comptes Rendus. Mathématique, Volume 350 (2012) no. 23-24, pp. 1051-1053. doi : 10.1016/j.crma.2012.11.002. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.11.002/
[1] Locally connected exceptional minimal sets of surface homeomorphisms, Ann. Inst. Fourier, Volume 54 (2004), pp. 711-732
[2] Some remarks on almost periodic transformations, Bull. Amer. Math. Soc., Volume 51 (1945), pp. 126-130
[3] Topological Dynamics, Amer. Math. Soc. Publ., vol. 36, Amer. Math. Soc., Providence, RI, 1955
[4] A classification of minimal sets of torus homeomorphisms, Math. Z. (2012) | arXiv | DOI
[5] Minimal sets of non-resonant torus homeomorphisms, Fund. Math., Volume 211 (2011), pp. 41-76
[6] Pointwise periodic homeomorphisms, Amer. J. Math., Volume 59 (1937), pp. 118-120
[7] Recurrence, pointwise almost periodicity and orbit closure relation for flows and foliations | arXiv
[8] R-closed homeomorphisms on surfaces | arXiv
Cité par Sources :
Commentaires - Politique