[Dérivées fractionnaires compensées et équations dʼévolution stochastiques]
Dans cette Note, nous sommes intéressés à développer une théorie trajectorielle pour les solutions ‘mild’ dʼéquations dʼévolution stochastiques lorsque le bruit est β-Hölder continue pour
We are interested in developing a pathwise theory for mild solutions of stochastic evolution equations when the noise path is β-Hölder continuous for
Accepté le :
Publié le :
María J. Garrido-Atienza 1 ; Kening Lu 2 ; Björn Schmalfuß 3
@article{CRMATH_2012__350_23-24_1037_0, author = {Mar{\'\i}a J. Garrido-Atienza and Kening Lu and Bj\"orn Schmalfu{\ss}}, title = {Compensated fractional derivatives and stochastic evolution equations}, journal = {Comptes Rendus. Math\'ematique}, pages = {1037--1042}, publisher = {Elsevier}, volume = {350}, number = {23-24}, year = {2012}, doi = {10.1016/j.crma.2012.11.007}, language = {en}, }
TY - JOUR AU - María J. Garrido-Atienza AU - Kening Lu AU - Björn Schmalfuß TI - Compensated fractional derivatives and stochastic evolution equations JO - Comptes Rendus. Mathématique PY - 2012 SP - 1037 EP - 1042 VL - 350 IS - 23-24 PB - Elsevier DO - 10.1016/j.crma.2012.11.007 LA - en ID - CRMATH_2012__350_23-24_1037_0 ER -
%0 Journal Article %A María J. Garrido-Atienza %A Kening Lu %A Björn Schmalfuß %T Compensated fractional derivatives and stochastic evolution equations %J Comptes Rendus. Mathématique %D 2012 %P 1037-1042 %V 350 %N 23-24 %I Elsevier %R 10.1016/j.crma.2012.11.007 %G en %F CRMATH_2012__350_23-24_1037_0
María J. Garrido-Atienza; Kening Lu; Björn Schmalfuß. Compensated fractional derivatives and stochastic evolution equations. Comptes Rendus. Mathématique, Volume 350 (2012) no. 23-24, pp. 1037-1042. doi : 10.1016/j.crma.2012.11.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.11.007/
[1] Partial differential equations driven by rough paths, J. Differential Equations, Volume 247 (2009) no. 1, pp. 140-173
[2] Non-linear rough heat equations, Probab. Theory Related Fields, Volume 153 (2012) no. 1–2, pp. 97-147
[3] Pathwise solutions to stochastic partial differential equations driven by fractional Brownian motions with Hurst parameters in
[4] Rough evolution equations, Ann. Probab., Volume 38 (2010) no. 1, pp. 1-75
[5] Rough path analysis via fractional calculus, Trans. Amer. Math. Soc., Volume 361 (2009) no. 5, pp. 2689-2718
[6] Fundamentals of the Theory of Operator Algebras: Elementary Theory, Graduate Studies in Mathematics, AMS, 1997
[7] Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer Applied Mathematical Series, Springer-Verlag, Berlin, 1983
[8] Another approach to some rough and stochastic partial differential equations, Stoch. Dyn., Volume 11 (2011) no. 2–3, pp. 535-550
[9] Integration with respect to fractal functions and stochastic calculus I, Probab. Theory Related Fields, Volume 111 (1998) no. 3, pp. 333-374
Cité par Sources :
Commentaires - Politique