[Dérivées fractionnaires compensées et équations dʼévolution stochastiques]
Dans cette Note, nous sommes intéressés à développer une théorie trajectorielle pour les solutions ‘mild’ dʼéquations dʼévolution stochastiques lorsque le bruit est β-Hölder continue pour
We are interested in developing a pathwise theory for mild solutions of stochastic evolution equations when the noise path is β-Hölder continuous for
Accepté le :
Publié le :
María J. Garrido-Atienza 1 ; Kening Lu 2 ; Björn Schmalfuß 3
@article{CRMATH_2012__350_23-24_1037_0, author = {Mar{\'\i}a J. Garrido-Atienza and Kening Lu and Bj\"orn Schmalfu{\ss}}, title = {Compensated fractional derivatives and stochastic evolution equations}, journal = {Comptes Rendus. Math\'ematique}, pages = {1037--1042}, publisher = {Elsevier}, volume = {350}, number = {23-24}, year = {2012}, doi = {10.1016/j.crma.2012.11.007}, language = {en}, }
TY - JOUR AU - María J. Garrido-Atienza AU - Kening Lu AU - Björn Schmalfuß TI - Compensated fractional derivatives and stochastic evolution equations JO - Comptes Rendus. Mathématique PY - 2012 SP - 1037 EP - 1042 VL - 350 IS - 23-24 PB - Elsevier DO - 10.1016/j.crma.2012.11.007 LA - en ID - CRMATH_2012__350_23-24_1037_0 ER -
%0 Journal Article %A María J. Garrido-Atienza %A Kening Lu %A Björn Schmalfuß %T Compensated fractional derivatives and stochastic evolution equations %J Comptes Rendus. Mathématique %D 2012 %P 1037-1042 %V 350 %N 23-24 %I Elsevier %R 10.1016/j.crma.2012.11.007 %G en %F CRMATH_2012__350_23-24_1037_0
María J. Garrido-Atienza; Kening Lu; Björn Schmalfuß. Compensated fractional derivatives and stochastic evolution equations. Comptes Rendus. Mathématique, Volume 350 (2012) no. 23-24, pp. 1037-1042. doi : 10.1016/j.crma.2012.11.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.11.007/
[1] Partial differential equations driven by rough paths, J. Differential Equations, Volume 247 (2009) no. 1, pp. 140-173
[2] Non-linear rough heat equations, Probab. Theory Related Fields, Volume 153 (2012) no. 1–2, pp. 97-147
[3] Pathwise solutions to stochastic partial differential equations driven by fractional Brownian motions with Hurst parameters in
[4] Rough evolution equations, Ann. Probab., Volume 38 (2010) no. 1, pp. 1-75
[5] Rough path analysis via fractional calculus, Trans. Amer. Math. Soc., Volume 361 (2009) no. 5, pp. 2689-2718
[6] Fundamentals of the Theory of Operator Algebras: Elementary Theory, Graduate Studies in Mathematics, AMS, 1997
[7] Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer Applied Mathematical Series, Springer-Verlag, Berlin, 1983
[8] Another approach to some rough and stochastic partial differential equations, Stoch. Dyn., Volume 11 (2011) no. 2–3, pp. 535-550
[9] Integration with respect to fractal functions and stochastic calculus I, Probab. Theory Related Fields, Volume 111 (1998) no. 3, pp. 333-374
- Complex variable approach to the analysis of a fractional differential equation in the real line, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 356 (2018) no. 3, pp. 293-300 | DOI:10.1016/j.crma.2018.01.008 | Zbl:1386.34014
- Random dynamical systems for stochastic evolution equations driven by multiplicative fractional Brownian noise with Hurst parameters
, SIAM Journal on Applied Dynamical Systems, Volume 15 (2016) no. 1, pp. 625-654 | DOI:10.1137/15m1030303 | Zbl:1336.60103 - Local pathwise solutions to stochastic evolution equations driven by fractional Brownian motions with Hurst parameters
, Discrete and Continuous Dynamical Systems. Series B, Volume 20 (2015) no. 8, pp. 2553-2581 | DOI:10.3934/dcdsb.2015.20.2553 | Zbl:1335.60111 - A note on the generation of random dynamical systems from fractional stochastic delay differential equations, Stochastics and Dynamics, Volume 15 (2015) no. 3, p. 13 (Id/No 1550018) | DOI:10.1142/s0219493715500185 | Zbl:1317.37099
- Pathwise solutions of SPDEs driven by Hölder-continuous integrators with exponent larger than
and random dynamical systems, Discrete and Continuous Dynamical Systems, Volume 34 (2014) no. 1, pp. 79-98 | DOI:10.3934/dcds.2014.34.79 | Zbl:1321.37076 - Random Attractors for Stochastic Evolution Equations Driven by Fractional Brownian Motion, SIAM Journal on Mathematical Analysis, Volume 46 (2014) no. 4, p. 2281 | DOI:10.1137/130930662
- Stochastic porous media equation driven by fractional Brownian motion, Stochastics and Dynamics, Volume 13 (2013) no. 4, p. 33 (Id/No 1350010) | DOI:10.1142/s021949371350010x | Zbl:1291.35453
Cité par 7 documents. Sources : Crossref, zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier