[Dérivées fractionnaires compensées et équations dʼévolution stochastiques]
Dans cette Note, nous sommes intéressés à développer une théorie trajectorielle pour les solutions ‘mild’ dʼéquations dʼévolution stochastiques lorsque le bruit est β-Hölder continue pour . Selon la théorie ‘Rough Path’, les intégrales stochastiques liés à la solution des équations différentielles ordinaires contiennent des éléments dʼun espace de tenseurs. Grâce aux dérivées fractionnaires (compensées), on peut formuler une deuxième équation pour ce tenseur, pour lequel nous construisons un autre tenseur en fonction non seulement sur le bruit, mais aussi sur le semi-groupe. Nous formulons des conditions suffisantes pour lʼexistence et lʼunicité dʼune solution trajectorielle en utilisant le théoréme du point fixe de Banach lorsque des coefficients du système sont assez régulières.
We are interested in developing a pathwise theory for mild solutions of stochastic evolution equations when the noise path is β-Hölder continuous for . From the point of view of the Rough Path Theory, stochastic integrals related to the solution of ordinary differential equations contain area-elements from a tensor space. Based on (compensated) fractional derivatives we are able to derive a second mild equation for these area components. We formulate sufficient conditions for the existence and uniqueness of a pathwise mild solution by using the Banach fixed point theorem provided that the coefficients of the system are sufficiently regular.
Accepté le :
Publié le :
María J. Garrido-Atienza 1 ; Kening Lu 2 ; Björn Schmalfuß 3
@article{CRMATH_2012__350_23-24_1037_0, author = {Mar{\'\i}a J. Garrido-Atienza and Kening Lu and Bj\"orn Schmalfu{\ss}}, title = {Compensated fractional derivatives and stochastic evolution equations}, journal = {Comptes Rendus. Math\'ematique}, pages = {1037--1042}, publisher = {Elsevier}, volume = {350}, number = {23-24}, year = {2012}, doi = {10.1016/j.crma.2012.11.007}, language = {en}, }
TY - JOUR AU - María J. Garrido-Atienza AU - Kening Lu AU - Björn Schmalfuß TI - Compensated fractional derivatives and stochastic evolution equations JO - Comptes Rendus. Mathématique PY - 2012 SP - 1037 EP - 1042 VL - 350 IS - 23-24 PB - Elsevier DO - 10.1016/j.crma.2012.11.007 LA - en ID - CRMATH_2012__350_23-24_1037_0 ER -
%0 Journal Article %A María J. Garrido-Atienza %A Kening Lu %A Björn Schmalfuß %T Compensated fractional derivatives and stochastic evolution equations %J Comptes Rendus. Mathématique %D 2012 %P 1037-1042 %V 350 %N 23-24 %I Elsevier %R 10.1016/j.crma.2012.11.007 %G en %F CRMATH_2012__350_23-24_1037_0
María J. Garrido-Atienza; Kening Lu; Björn Schmalfuß. Compensated fractional derivatives and stochastic evolution equations. Comptes Rendus. Mathématique, Volume 350 (2012) no. 23-24, pp. 1037-1042. doi : 10.1016/j.crma.2012.11.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.11.007/
[1] Partial differential equations driven by rough paths, J. Differential Equations, Volume 247 (2009) no. 1, pp. 140-173
[2] Non-linear rough heat equations, Probab. Theory Related Fields, Volume 153 (2012) no. 1–2, pp. 97-147
[3] Pathwise solutions to stochastic partial differential equations driven by fractional Brownian motions with Hurst parameters in | arXiv
[4] Rough evolution equations, Ann. Probab., Volume 38 (2010) no. 1, pp. 1-75
[5] Rough path analysis via fractional calculus, Trans. Amer. Math. Soc., Volume 361 (2009) no. 5, pp. 2689-2718
[6] Fundamentals of the Theory of Operator Algebras: Elementary Theory, Graduate Studies in Mathematics, AMS, 1997
[7] Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer Applied Mathematical Series, Springer-Verlag, Berlin, 1983
[8] Another approach to some rough and stochastic partial differential equations, Stoch. Dyn., Volume 11 (2011) no. 2–3, pp. 535-550
[9] Integration with respect to fractal functions and stochastic calculus I, Probab. Theory Related Fields, Volume 111 (1998) no. 3, pp. 333-374
Cité par Sources :
Commentaires - Politique