The purpose of this Note is to highlight the spectral instability of some non-selfadjoint differential operators, by studying the growth rate of the norms of the spectral projections associated with their eigenvalues. More precisely, we are concerned with some anharmonic oscillators with , defined on . We get asymptotic expansions for the norm of the spectral projections associated with the large eigenvalues of and , , extending the results of Davies (2000) [4] and Davies and Kuijlaars (2004) [5].
Notre objectif est de mettre en évidence lʼinstabilité spectrale de certains opérateurs différentiels non-autoadjoints, via lʼétude de la croissance des normes des projecteurs spectraux associés à leurs valeurs propres. Nous nous intéressons à certains oscillateurs anharmoniques avec , définis sur . Nous étendons les résultats de Davies (2000) [4] et Davies et Kuijlaars (2004) [5] en donnant un développement asymptotique de la norme des projecteurs spectraux associés aux grandes valeurs propres pour les opérateurs et , .
Accepted:
Published online:
Raphaël Henry 1
@article{CRMATH_2012__350_23-24_1043_0, author = {Rapha\"el Henry}, title = {Spectral instability of some non-selfadjoint anharmonic oscillators}, journal = {Comptes Rendus. Math\'ematique}, pages = {1043--1046}, publisher = {Elsevier}, volume = {350}, number = {23-24}, year = {2012}, doi = {10.1016/j.crma.2012.11.011}, language = {en}, }
Raphaël Henry. Spectral instability of some non-selfadjoint anharmonic oscillators. Comptes Rendus. Mathématique, Volume 350 (2012) no. 23-24, pp. 1043-1046. doi : 10.1016/j.crma.2012.11.011. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.11.011/
[1] Handbook of Mathematical Functions, National Bureau of Standards, 1964
[2] The stability of the normal state of superconductors in the presence of electric currents, SIAM J. Math. Anal., Volume 40 (2008) no. 2, pp. 824-850
[3] Spectral instability for some Schrödinger operators, Numer. Math., Volume 85 (2000), pp. 525-552
[4] Wild spectral behaviour of anharmonic oscillators, Bull. London Math. Soc., Volume 32 (2000), pp. 432-438
[5] Spectral asymptotics of the non-self-adjoint harmonic oscillator, J. London Math. Soc. (2), Volume 70 (2004), pp. 420-426
[6] Precise estimates of tunneling and eigenvalues near a potential barrier, J. Differential Equations, Volume 72 (1988), pp. 149-177
[7] Microlocal Analysis for Differential Operators: An Introduction, London Math. Soc. Lecture Note Ser., vol. 196, 1994
[8] On pseudo-spectral problems related to a time dependent model in superconductivity with electric current, Confluentes Math., Volume 3 (2011) no. 2, pp. 237-251
[9] Asymptotique des niveaux dʼénergie pour des hamiltoniens à un degré de liberté, Duke Math. J., Volume 49 (1982) no. 4, pp. 853-868
[10] Asymptotics and Special Functions, Academic Press, 1974
[11] -algebras techniques in numerical analysis, J. Operator Theory, Volume 35 (1996), pp. 241-280
[12] J. Sjöstrand, Lecture notes: Spectral properties of non-self-adjoint operators, Journ. Equ. Dériv. Partielles (2009), Exp. No. I, 111 pp.
[13] Spectra and Pseudospectra. The Behavior of Nonnormal Matrices and Operators, Princeton University Press, Princeton, NJ, 2005
[14] A. Voros, Spectre de lʼéquation de Schrödinger et méthode BKW, Publications Mathématiques dʼOrsay, 81.09, 1981.
Cited by Sources:
Comments - Policy