Comptes Rendus
Partial Differential Equations
Spectral instability of some non-selfadjoint anharmonic oscillators
Comptes Rendus. Mathématique, Volume 350 (2012) no. 23-24, pp. 1043-1046.

The purpose of this Note is to highlight the spectral instability of some non-selfadjoint differential operators, by studying the growth rate of the norms of the spectral projections Πn associated with their eigenvalues. More precisely, we are concerned with some anharmonic oscillators A(m,θ)=d2dx2+eiθ|x|m with |θ|<min{(m+2)π4,(m+2)π2m}, defined on L2(R). We get asymptotic expansions for the norm of the spectral projections associated with the large eigenvalues of A(1,θ) and A(2k,θ), k1, extending the results of Davies (2000) [4] and Davies and Kuijlaars (2004) [5].

Notre objectif est de mettre en évidence lʼinstabilité spectrale de certains opérateurs différentiels non-autoadjoints, via lʼétude de la croissance des normes des projecteurs spectraux Πn associés à leurs valeurs propres. Nous nous intéressons à certains oscillateurs anharmoniques A(m,θ)=d2dx2+eiθ|x|m avec |θ|<min{(m+2)π4,(m+2)π2m}, définis sur L2(R). Nous étendons les résultats de Davies (2000) [4] et Davies et Kuijlaars (2004) [5] en donnant un développement asymptotique de la norme des projecteurs spectraux associés aux grandes valeurs propres pour les opérateurs A(1,θ) et A(2k,θ), k1.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2012.11.011

Raphaël Henry 1

1 Université Paris-Sud, 91405 Orsay cedex, France
@article{CRMATH_2012__350_23-24_1043_0,
     author = {Rapha\"el Henry},
     title = {Spectral instability of some non-selfadjoint anharmonic oscillators},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1043--1046},
     publisher = {Elsevier},
     volume = {350},
     number = {23-24},
     year = {2012},
     doi = {10.1016/j.crma.2012.11.011},
     language = {en},
}
TY  - JOUR
AU  - Raphaël Henry
TI  - Spectral instability of some non-selfadjoint anharmonic oscillators
JO  - Comptes Rendus. Mathématique
PY  - 2012
SP  - 1043
EP  - 1046
VL  - 350
IS  - 23-24
PB  - Elsevier
DO  - 10.1016/j.crma.2012.11.011
LA  - en
ID  - CRMATH_2012__350_23-24_1043_0
ER  - 
%0 Journal Article
%A Raphaël Henry
%T Spectral instability of some non-selfadjoint anharmonic oscillators
%J Comptes Rendus. Mathématique
%D 2012
%P 1043-1046
%V 350
%N 23-24
%I Elsevier
%R 10.1016/j.crma.2012.11.011
%G en
%F CRMATH_2012__350_23-24_1043_0
Raphaël Henry. Spectral instability of some non-selfadjoint anharmonic oscillators. Comptes Rendus. Mathématique, Volume 350 (2012) no. 23-24, pp. 1043-1046. doi : 10.1016/j.crma.2012.11.011. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.11.011/

[1] M. Abramowitz; I. Stegun Handbook of Mathematical Functions, National Bureau of Standards, 1964

[2] Y. Almog The stability of the normal state of superconductors in the presence of electric currents, SIAM J. Math. Anal., Volume 40 (2008) no. 2, pp. 824-850

[3] A. Aslanyan; E.-B. Davies Spectral instability for some Schrödinger operators, Numer. Math., Volume 85 (2000), pp. 525-552

[4] E.-B. Davies Wild spectral behaviour of anharmonic oscillators, Bull. London Math. Soc., Volume 32 (2000), pp. 432-438

[5] E.-B. Davies; A. Kuijlaars Spectral asymptotics of the non-self-adjoint harmonic oscillator, J. London Math. Soc. (2), Volume 70 (2004), pp. 420-426

[6] C. Gérard; A. Grigis Precise estimates of tunneling and eigenvalues near a potential barrier, J. Differential Equations, Volume 72 (1988), pp. 149-177

[7] A. Grigis; J. Sjöstrand Microlocal Analysis for Differential Operators: An Introduction, London Math. Soc. Lecture Note Ser., vol. 196, 1994

[8] B. Helffer On pseudo-spectral problems related to a time dependent model in superconductivity with electric current, Confluentes Math., Volume 3 (2011) no. 2, pp. 237-251

[9] B. Helffer; D. Robert Asymptotique des niveaux dʼénergie pour des hamiltoniens à un degré de liberté, Duke Math. J., Volume 49 (1982) no. 4, pp. 853-868

[10] F.W.J. Olver Asymptotics and Special Functions, Academic Press, 1974

[11] S. Roch; B. Silbermann C-algebras techniques in numerical analysis, J. Operator Theory, Volume 35 (1996), pp. 241-280

[12] J. Sjöstrand, Lecture notes: Spectral properties of non-self-adjoint operators, Journ. Equ. Dériv. Partielles (2009), Exp. No. I, 111 pp.

[13] L.N. Trefethen; M. Embree Spectra and Pseudospectra. The Behavior of Nonnormal Matrices and Operators, Princeton University Press, Princeton, NJ, 2005

[14] A. Voros, Spectre de lʼéquation de Schrödinger et méthode BKW, Publications Mathématiques dʼOrsay, 81.09, 1981.

Cited by Sources:

Comments - Policy