[Estimation dʼerreur pour un schéma volumes finis 1D–2D. Comparaison avec un schéma standard sur un maillage 2D non admissible]
We study a hybrid finite volume scheme to solve a problem set in a domain consisting of several zones of different dimensions in space. For a linear 1D–2D model problem, we define a specific
On étudie un schéma volumes finis hybride pour résoudre un problème posé dans un domaine où la dimension en espace est différente dʼune zone à lʼautre. Pour un problème modèle linéaire 1D–2D, nous définissons une norme
Accepté le :
Publié le :
Marie-Claude Viallon 1
@article{CRMATH_2013__351_1-2_47_0, author = {Marie-Claude Viallon}, title = {Error estimate for a {1D{\textendash}2D} finite volume scheme. {Comparison} with a standard scheme on a {2D} non-admissible mesh}, journal = {Comptes Rendus. Math\'ematique}, pages = {47--51}, publisher = {Elsevier}, volume = {351}, number = {1-2}, year = {2013}, doi = {10.1016/j.crma.2013.01.011}, language = {en}, }
TY - JOUR AU - Marie-Claude Viallon TI - Error estimate for a 1D–2D finite volume scheme. Comparison with a standard scheme on a 2D non-admissible mesh JO - Comptes Rendus. Mathématique PY - 2013 SP - 47 EP - 51 VL - 351 IS - 1-2 PB - Elsevier DO - 10.1016/j.crma.2013.01.011 LA - en ID - CRMATH_2013__351_1-2_47_0 ER -
Marie-Claude Viallon. Error estimate for a 1D–2D finite volume scheme. Comparison with a standard scheme on a 2D non-admissible mesh. Comptes Rendus. Mathématique, Volume 351 (2013) no. 1-2, pp. 47-51. doi: 10.1016/j.crma.2013.01.011
[1] The Lions domain decomposition algorithm on non matching cell-centered finite volume meshes, IMA Journal of Numerical Analysis, Volume 24 (2004), pp. 465-490
[2] A finite volume method for the Laplace equation on almost arbitrary two-dimensional grids, Mathematical Modelling and Numerical Analysis, Volume 39 (2005) no. 6, pp. 1203-1249
[3] R. Eymard, T. Gallouët, R. Herbin, Finite volume methods, in: P.G. Ciarlet, J.L. Lions (Eds.), Handbook of Numerical Analysis, vol. VII, 2000, pp. 713–1020.
[4] A control volume method to solve an elliptic equation on a 2D irregular meshing, Computer Methods in Applied Mechanics and Engineering, Volume 100 (1992), pp. 275-290
[5] Method of asymptotic partial decomposition of domain, Mathematical Models and Methods in Applied Sciences, Volume 8 (1998) no. 1, pp. 139-156
[6] The finite volume implementation of the partial asymptotic domain decomposition, Applicable Analysis. An International Journal, Volume 87 (2008) no. 12, pp. 1397-1424
[7] G.P. Panasenko, M.-C. Viallon, Error estimate in a finite volume approximation of the partial asymptotic domain decomposition, Mathematical Methods in the Applied Sciences, , in press. | DOI
Cité par Sources :
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier