Comptes Rendus
1D–2D coupling for river flow modeling
[Couplage 1D–2D pour la modélisation des inondations fluviales]
Comptes Rendus. Mécanique, Volume 339 (2011) no. 4, pp. 226-234.

Un modèle basé sur les équations de Saint-Venant en eau peu profonde (SW12D pour Shallow Water 1D–2D) est présenté. Le lit mineur et le lit majeur sont discrétisés avec des mailles 1D et 2D respectivement. Le modèle proposé apporte une meilleure description (en comparaison aux modèles existants) des phénomènes hydrauliques en (i) incluant un transfert de quantité de mouvement latérale entre les lits mineur et majeur, (ii) prenant en compte la nature 2D des écoulements dans les mailles 1D qui représentent le lit mineur. Cela permet une meilleure description des phénomènes tels que les pertes de charge dues aux coudes et méandres et tels que les court-circuits de meandres pendant les inondations.

A shallow water-based model for river–floodplain interaction (SW12D for Shallow Water 1D–2D) is presented. The main channel and floodplain are discretized using 1D and 2D elements respectively. The proposed model provides an improved description of hydraulic phenomena over existing models by (i) including lateral momentum transfer between the main channel and the floodplain, (ii) taking the 2D nature of the flow into account within the 1D elements that describe the main channel. This allows for a better description of phenomena such as head losses due to channel bends and meanders, and meander shortcuts during floods.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2011.02.001
Keywords: Computational fluid mechanics, 1D–2D coupling model, Hydrodynamic modeling, Saint-Venant equations, Main channel/floodplain interactions
Mot clés : Mécanique des fluides numérique, Couplage 1D–2D, Modélisation hydrodynamique, Équations de Saint-Venant, Intéractions lit mineur / lit majeur
Pascal Finaud-Guyot 1 ; Carole Delenne 2 ; Vincent Guinot 2 ; Cécile Llovel 3

1 Institut de mécanique des fluides et des solides de Strasbourg (CNRS, ENGEES, INSA, UDS), 2, rue Boussingault, 67000 Strasbourg, France
2 HydroSciences Montpellier, UMR 5569 (CNRS, IRD, UM1, UM2), université Montpellier 2, place Eugène-Bataillon, CCMSE, 34095 Montpellier, France
3 GEI (Ginger Environnement et Infrastructures), 34060 Montpellier cedex 2, France
@article{CRMECA_2011__339_4_226_0,
     author = {Pascal Finaud-Guyot and Carole Delenne and Vincent Guinot and C\'ecile Llovel},
     title = {1D{\textendash}2D coupling for river flow modeling},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {226--234},
     publisher = {Elsevier},
     volume = {339},
     number = {4},
     year = {2011},
     doi = {10.1016/j.crme.2011.02.001},
     language = {en},
}
TY  - JOUR
AU  - Pascal Finaud-Guyot
AU  - Carole Delenne
AU  - Vincent Guinot
AU  - Cécile Llovel
TI  - 1D–2D coupling for river flow modeling
JO  - Comptes Rendus. Mécanique
PY  - 2011
SP  - 226
EP  - 234
VL  - 339
IS  - 4
PB  - Elsevier
DO  - 10.1016/j.crme.2011.02.001
LA  - en
ID  - CRMECA_2011__339_4_226_0
ER  - 
%0 Journal Article
%A Pascal Finaud-Guyot
%A Carole Delenne
%A Vincent Guinot
%A Cécile Llovel
%T 1D–2D coupling for river flow modeling
%J Comptes Rendus. Mécanique
%D 2011
%P 226-234
%V 339
%N 4
%I Elsevier
%R 10.1016/j.crme.2011.02.001
%G en
%F CRMECA_2011__339_4_226_0
Pascal Finaud-Guyot; Carole Delenne; Vincent Guinot; Cécile Llovel. 1D–2D coupling for river flow modeling. Comptes Rendus. Mécanique, Volume 339 (2011) no. 4, pp. 226-234. doi : 10.1016/j.crme.2011.02.001. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2011.02.001/

[1] D. Bousmar, Flow modelling in compound channels, PhD thesis, Université Catholique de Louvain, 2002.

[2] J.A. Cunge; F.M. Holly; A. Verwey Practical Aspects of Computational River Hydraulics, Pitman Publishing Ltd., London, 1980

[3] DHI Mike 11: A Modelling System for Rivers and Channels, Reference Manual, Danish Hydraulic Institute, 2004

[4] P. Finaud-Guyot; C. Delenne; J. Lhomme; V. Guinot; C. Llovel An approximate-state Riemann solver for the two-dimensional shallow water equations with porosity, International Journal for Numerical Methods in Fluids, Volume 62 (2010), pp. 1299-1331

[5] P. Finaud-Guyot, Macroscopic flood modelling: Taking into account directional flows and main channel – floodplain transfer, PhD thesis, Université Montpellier 2, 2009 (in French).

[6] V. Guinot Godunov-Type Schemes, An Introduction for Engineers, Elsevier, 2003

[7] V. Guinot; S. Soares-Frazão Flux and source term discretization in two-dimensional shallow water models with porosity on unstructured grids, International Journal for Numerical Methods in Fluids, Volume 50 (2006), pp. 309-345

[8] V. Guinot; B. Cappelaere Sensitivity analysis of 2D steady-state shallow water flow – Application to free surface flow model calibration, Advances in Water Resources, Volume 32 (2009), pp. 540-560

[9] J.M. Hervouët, Hydrodynamique des écoulements à surface libre – Modélisation numérique avec la méthode des éléments finis, Ponts et Chaussées (Presses), 2003 (in French).

[10] H.R. Wallingford Isis Flow, User Manual, Wallingford Software, 1999

[11] US Army Corps of Engineers, Hydrologic Engineering Center, HEC-Ras, River Analysis System, Hydraulic Reference Manual, November 2002.

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Dynamics of floodplain lakes in the Upper Amazon Basin during the late Holocene

Isabel Quintana-Cobo; Patricia Moreira-Turcq; Renato C. Cordeiro; ...

C. R. Géos (2018)