Comptes Rendus
Algebraic Geometry
Ulrich bundles on quartic surfaces with Picard number 1
[Fibrés dʼUlrich sur les surfaces quartiques de nombre de Picard 1]
Comptes Rendus. Mathématique, Volume 351 (2013) no. 5-6, pp. 221-224.

Dans cette note, nous démontrons quʼil existe des fibrés dʼUlrich stables de chaque rang pair sur une surface quartique lisse XP3 de nombre de Picard 1.

In this note, we prove that there exist stable Ulrich bundles of every even rank on a smooth quartic surface XP3 with Picard number 1.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2013.04.005

Emre Coskun 1

1 Department of Mathematics, Middle East Technical University, Ankara 06800, Turkey
@article{CRMATH_2013__351_5-6_221_0,
     author = {Emre Coskun},
     title = {Ulrich bundles on quartic surfaces with {Picard} number 1},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {221--224},
     publisher = {Elsevier},
     volume = {351},
     number = {5-6},
     year = {2013},
     doi = {10.1016/j.crma.2013.04.005},
     language = {en},
}
TY  - JOUR
AU  - Emre Coskun
TI  - Ulrich bundles on quartic surfaces with Picard number 1
JO  - Comptes Rendus. Mathématique
PY  - 2013
SP  - 221
EP  - 224
VL  - 351
IS  - 5-6
PB  - Elsevier
DO  - 10.1016/j.crma.2013.04.005
LA  - en
ID  - CRMATH_2013__351_5-6_221_0
ER  - 
%0 Journal Article
%A Emre Coskun
%T Ulrich bundles on quartic surfaces with Picard number 1
%J Comptes Rendus. Mathématique
%D 2013
%P 221-224
%V 351
%N 5-6
%I Elsevier
%R 10.1016/j.crma.2013.04.005
%G en
%F CRMATH_2013__351_5-6_221_0
Emre Coskun. Ulrich bundles on quartic surfaces with Picard number 1. Comptes Rendus. Mathématique, Volume 351 (2013) no. 5-6, pp. 221-224. doi : 10.1016/j.crma.2013.04.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.04.005/

[1] M. Casanellas; R. Hartshorne Stable Ulrich bundles, Int. J. Math., Volume 23 (2012) no. 8, p. 1250083 (with an appendix by F. Geiss and F.-O. Schreyer) 50 pp

[2] E. Coskun; R. Kulkarni; Y. Mustopa On representations of Clifford algebras of ternary cubic forms, New Trends in Noncommutative Algebra, Contemp. Math., vol. 562, 2012, pp. 91-99

[3] E. Coskun; R. Kulkarni; Y. Mustopa Pfaffian quartic surfaces and representations of Clifford algebras, Doc. Math., Volume 17 (2012), pp. 1003-1028

[4] E. Coskun; R. Kulkarni; Y. Mustopa The geometry of Ulrich bundles on del Pezzo surfaces, J. Algebra, Volume 375 (2013), pp. 280-301

Cité par Sources :

Commentaires - Politique