[Fibrés dʼUlrich sur les surfaces quartiques de nombre de Picard 1]
Dans cette note, nous démontrons quʼil existe des fibrés dʼUlrich stables de chaque rang pair sur une surface quartique lisse de nombre de Picard 1.
In this note, we prove that there exist stable Ulrich bundles of every even rank on a smooth quartic surface with Picard number 1.
Accepté le :
Publié le :
Emre Coskun 1
@article{CRMATH_2013__351_5-6_221_0, author = {Emre Coskun}, title = {Ulrich bundles on quartic surfaces with {Picard} number 1}, journal = {Comptes Rendus. Math\'ematique}, pages = {221--224}, publisher = {Elsevier}, volume = {351}, number = {5-6}, year = {2013}, doi = {10.1016/j.crma.2013.04.005}, language = {en}, }
Emre Coskun. Ulrich bundles on quartic surfaces with Picard number 1. Comptes Rendus. Mathématique, Volume 351 (2013) no. 5-6, pp. 221-224. doi : 10.1016/j.crma.2013.04.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.04.005/
[1] Stable Ulrich bundles, Int. J. Math., Volume 23 (2012) no. 8, p. 1250083 (with an appendix by F. Geiss and F.-O. Schreyer) 50 pp
[2] On representations of Clifford algebras of ternary cubic forms, New Trends in Noncommutative Algebra, Contemp. Math., vol. 562, 2012, pp. 91-99
[3] Pfaffian quartic surfaces and representations of Clifford algebras, Doc. Math., Volume 17 (2012), pp. 1003-1028
[4] The geometry of Ulrich bundles on del Pezzo surfaces, J. Algebra, Volume 375 (2013), pp. 280-301
Cité par Sources :
Commentaires - Politique