[Lʼinvariant dʼAlexander
The aim of this note is to prove that the
Le but de cette note est de démontrer que lʼinvariant dʼAlexander
Accepté le :
Publié le :
Fathi Ben Aribi 1
@article{CRMATH_2013__351_5-6_215_0, author = {Fathi Ben Aribi}, title = {The $ {L}^{2}${-Alexander} invariant detects the unknot}, journal = {Comptes Rendus. Math\'ematique}, pages = {215--219}, publisher = {Elsevier}, volume = {351}, number = {5-6}, year = {2013}, doi = {10.1016/j.crma.2013.03.009}, language = {en}, }
Fathi Ben Aribi. The $ {L}^{2}$-Alexander invariant detects the unknot. Comptes Rendus. Mathématique, Volume 351 (2013) no. 5-6, pp. 215-219. doi : 10.1016/j.crma.2013.03.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.03.009/
[1] 3-Manifold groups, 2012 | arXiv
[2] Elliptic operators, discrete groups and von Neumann algebras, Orsay, 1974 (Astérisque), Volume vols. 32–33, Soc. Math. France, Paris (1976), pp. 43-72
[3] Knots, de Gruyter Stud. Math., vol. 5, Walter de Gruyter, 2003
[4] J. Dubois, S. Friedl, The
[5] J. Dubois, C. Wegner,
[6] An
[7]
[8] A duality theorem for Reidemeister torsion, Ann. Math., Volume 76 (1962), pp. 134-147
[9] The colored Jones polynomials and the simplicial volume of a knot, Acta Math., Volume 186 (2001), pp. 85-104
Cité par Sources :
Commentaires - Politique