[Fibrés dʼUlrich sur les surfaces quartiques de nombre de Picard 1]
In this note, we prove that there exist stable Ulrich bundles of every even rank on a smooth quartic surface
Dans cette note, nous démontrons quʼil existe des fibrés dʼUlrich stables de chaque rang pair sur une surface quartique lisse
Accepté le :
Publié le :
Emre Coskun 1
@article{CRMATH_2013__351_5-6_221_0, author = {Emre Coskun}, title = {Ulrich bundles on quartic surfaces with {Picard} number 1}, journal = {Comptes Rendus. Math\'ematique}, pages = {221--224}, publisher = {Elsevier}, volume = {351}, number = {5-6}, year = {2013}, doi = {10.1016/j.crma.2013.04.005}, language = {en}, }
Emre Coskun. Ulrich bundles on quartic surfaces with Picard number 1. Comptes Rendus. Mathématique, Volume 351 (2013) no. 5-6, pp. 221-224. doi : 10.1016/j.crma.2013.04.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.04.005/
[1] Stable Ulrich bundles, Int. J. Math., Volume 23 (2012) no. 8, p. 1250083 (with an appendix by F. Geiss and F.-O. Schreyer) 50 pp
[2] On representations of Clifford algebras of ternary cubic forms, New Trends in Noncommutative Algebra, Contemp. Math., vol. 562, 2012, pp. 91-99
[3] Pfaffian quartic surfaces and representations of Clifford algebras, Doc. Math., Volume 17 (2012), pp. 1003-1028
[4] The geometry of Ulrich bundles on del Pezzo surfaces, J. Algebra, Volume 375 (2013), pp. 280-301
- Ulrich bundles on a general blow-up of the plane, Annali di Matematica Pura ed Applicata. Serie Quarta, Volume 202 (2023) no. 4, pp. 1835-1854 | DOI:10.1007/s10231-023-01303-4 | Zbl:1516.14080
- Geometry of certain Brill-Noether locus on a very general sextic surface and Ulrich bundles, Proceedings of the Indian Academy of Sciences. Mathematical Sciences, Volume 132 (2022) no. 1, p. 30 (Id/No 22) | DOI:10.1007/s12044-021-00652-5 | Zbl:1494.14042
- Ulrich and aCM bundles from invariant theory, Communications in Algebra, Volume 47 (2019) no. 2, pp. 706-718 | DOI:10.1080/00927872.2018.1495222 | Zbl:1436.14082
- A Survey of Ulrich Bundles, Analytic and Algebraic Geometry (2017), p. 85 | DOI:10.1007/978-981-10-5648-2_6
- Minimal resolutions, Chow forms and Ulrich bundles on
surfaces, Journal für die Reine und Angewandte Mathematik, Volume 730 (2017), pp. 225-249 | DOI:10.1515/crelle-2014-0124 | Zbl:1387.14088
Cité par 5 documents. Sources : Crossref, zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier