Comptes Rendus
Algebraic Geometry
Ulrich bundles on quartic surfaces with Picard number 1
[Fibrés dʼUlrich sur les surfaces quartiques de nombre de Picard 1]
Comptes Rendus. Mathématique, Volume 351 (2013) no. 5-6, pp. 221-224.

In this note, we prove that there exist stable Ulrich bundles of every even rank on a smooth quartic surface XP3 with Picard number 1.

Dans cette note, nous démontrons quʼil existe des fibrés dʼUlrich stables de chaque rang pair sur une surface quartique lisse XP3 de nombre de Picard 1.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2013.04.005

Emre Coskun 1

1 Department of Mathematics, Middle East Technical University, Ankara 06800, Turkey
@article{CRMATH_2013__351_5-6_221_0,
     author = {Emre Coskun},
     title = {Ulrich bundles on quartic surfaces with {Picard} number 1},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {221--224},
     publisher = {Elsevier},
     volume = {351},
     number = {5-6},
     year = {2013},
     doi = {10.1016/j.crma.2013.04.005},
     language = {en},
}
TY  - JOUR
AU  - Emre Coskun
TI  - Ulrich bundles on quartic surfaces with Picard number 1
JO  - Comptes Rendus. Mathématique
PY  - 2013
SP  - 221
EP  - 224
VL  - 351
IS  - 5-6
PB  - Elsevier
DO  - 10.1016/j.crma.2013.04.005
LA  - en
ID  - CRMATH_2013__351_5-6_221_0
ER  - 
%0 Journal Article
%A Emre Coskun
%T Ulrich bundles on quartic surfaces with Picard number 1
%J Comptes Rendus. Mathématique
%D 2013
%P 221-224
%V 351
%N 5-6
%I Elsevier
%R 10.1016/j.crma.2013.04.005
%G en
%F CRMATH_2013__351_5-6_221_0
Emre Coskun. Ulrich bundles on quartic surfaces with Picard number 1. Comptes Rendus. Mathématique, Volume 351 (2013) no. 5-6, pp. 221-224. doi : 10.1016/j.crma.2013.04.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.04.005/

[1] M. Casanellas; R. Hartshorne Stable Ulrich bundles, Int. J. Math., Volume 23 (2012) no. 8, p. 1250083 (with an appendix by F. Geiss and F.-O. Schreyer) 50 pp

[2] E. Coskun; R. Kulkarni; Y. Mustopa On representations of Clifford algebras of ternary cubic forms, New Trends in Noncommutative Algebra, Contemp. Math., vol. 562, 2012, pp. 91-99

[3] E. Coskun; R. Kulkarni; Y. Mustopa Pfaffian quartic surfaces and representations of Clifford algebras, Doc. Math., Volume 17 (2012), pp. 1003-1028

[4] E. Coskun; R. Kulkarni; Y. Mustopa The geometry of Ulrich bundles on del Pezzo surfaces, J. Algebra, Volume 375 (2013), pp. 280-301

  • Ciro Ciliberto; Flaminio Flamini; Andreas Leopold Knutsen Ulrich bundles on a general blow-up of the plane, Annali di Matematica Pura ed Applicata. Serie Quarta, Volume 202 (2023) no. 4, pp. 1835-1854 | DOI:10.1007/s10231-023-01303-4 | Zbl:1516.14080
  • Debojyoti Bhattacharya Geometry of certain Brill-Noether locus on a very general sextic surface and Ulrich bundles, Proceedings of the Indian Academy of Sciences. Mathematical Sciences, Volume 132 (2022) no. 1, p. 30 (Id/No 22) | DOI:10.1007/s12044-021-00652-5 | Zbl:1494.14042
  • Laurent Manivel Ulrich and aCM bundles from invariant theory, Communications in Algebra, Volume 47 (2019) no. 2, pp. 706-718 | DOI:10.1080/00927872.2018.1495222 | Zbl:1436.14082
  • Emre Coskun A Survey of Ulrich Bundles, Analytic and Algebraic Geometry (2017), p. 85 | DOI:10.1007/978-981-10-5648-2_6
  • Marian Aprodu; Gavril Farkas; Angela Ortega Minimal resolutions, Chow forms and Ulrich bundles on K3 surfaces, Journal für die Reine und Angewandte Mathematik, Volume 730 (2017), pp. 225-249 | DOI:10.1515/crelle-2014-0124 | Zbl:1387.14088

Cité par 5 documents. Sources : Crossref, zbMATH

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: