We give a short elementary proof of the fact that connected semisimple real Lie groups satisfy property RD. The proof is based on a process of linearisation.
Nous donnons dans cette note une preuve courte et élémentaire du fait que les groupes de Lie semi-simples réels connexes satisfont la propriété RD. La preuve est basée sur un procédé de linéarisation.
Accepted:
Published online:
Adrien Boyer 1
@article{CRMATH_2013__351_9-10_335_0, author = {Adrien Boyer}, title = {Semisimple {Lie} groups satisfy property {RD,} a short proof}, journal = {Comptes Rendus. Math\'ematique}, pages = {335--338}, publisher = {Elsevier}, volume = {351}, number = {9-10}, year = {2013}, doi = {10.1016/j.crma.2013.05.007}, language = {en}, }
Adrien Boyer. Semisimple Lie groups satisfy property RD, a short proof. Comptes Rendus. Mathématique, Volume 351 (2013) no. 9-10, pp. 335-338. doi : 10.1016/j.crma.2013.05.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.05.007/
[1] A local trace formula, Publ. Math. Inst. Hautes Études Sci., Volume 73 (1991), pp. 5-96
[2] Kazhdanʼs Property (T), New Math. Monogr., vol. 11, Cambridge University Press, Cambridge, 2008
[3] Quasi-regular representations and property RD, 2013 (preprint) | arXiv
[4] Connected Lie groups and property RD, Duke Math. J., Volume 137 (2007) no. 3, pp. 511-536
[5] Harmonic Analysis of Spherical Functions on Real Reductive Groups, Springer-Verlag, New York, 1988
[6] An example of a nonnuclear C*-algebra which has the metric approximation property, Invent. Math., Volume 50 (1978/1979) no. 3, pp. 279-293
[7] Sur le phénomène de Kunze–Stein, C. R. Acad. Sci. Paris, Sér. A–B, Volume 271 (1970), p. A491-A493
[8] Rapidly decreasing functions in reduced C*-algebras of groups, Trans. Amer. Math. Soc., Volume 317 (1990) no. 1, pp. 167-196
[9] Representation Theory of Semisimple Groups, Princeton Landmarks Math., 2001
[10] M. Perrone, Rapid decay and weak containment of unitary representations, 2009, unpublished notes.
[11] Rigidity, unitary representations of semisimple groups, and fundamental groups of manifolds with rank one transformation group, Ann. Math. (2), Volume 152 (2000) no. 1, pp. 113-182
[12] Introduction to the Baum–Connes Conjecture, Lectures Math. ETH Zürich, Birkhäuser Verlag, Basel, 2002
[13] La formule de Plancherel pour les groupes p-adiques. Dʼaprès Harish-Chandra, J. Inst. Math. Jussieu, Volume 2 (April 2003) no. 2, pp. 235-333
Cited by Sources:
Comments - Policy