For a pair of conjugate trigonometric polynomials , , normalized by the condition , the following extremal value is found:
Pour un couple de polynômes trigonométriques , , normalisés par la condition , on a la formule extrémale suivante :
Accepted:
Published online:
Dmitriy Dmitrishin 1; Anna Khamitova 2
@article{CRMATH_2013__351_9-10_367_0, author = {Dmitriy Dmitrishin and Anna Khamitova}, title = {Methods of harmonic analysis in nonlinear dynamics}, journal = {Comptes Rendus. Math\'ematique}, pages = {367--370}, publisher = {Elsevier}, volume = {351}, number = {9-10}, year = {2013}, doi = {10.1016/j.crma.2013.05.009}, language = {en}, }
Dmitriy Dmitrishin; Anna Khamitova. Methods of harmonic analysis in nonlinear dynamics. Comptes Rendus. Mathématique, Volume 351 (2013) no. 9-10, pp. 367-370. doi : 10.1016/j.crma.2013.05.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.05.009/
[1] On properties of non-negative trigonometric polynomials with monotonic coefficients, Vetsn. Ivanovo State Univ., Volume 3 (2001), pp. 109-115 (in Russian)
[2] Chaos Control, Lect. Notes Control Inf. Sci., vol. 292, 2003
[3] Extremal trigonometric polynomials and the problem of optimal stabilization of chaos, 2013 | arXiv
[4] Über trigonometrische polynome, J. Reine Angew. Math., Volume 146 (1916), pp. 53-82
[5] Further stability results for a generalization of delayed feedback control, Nonlinear Dyn., Volume 70 (2012), pp. 1255-1262
[6] Problems and Theorems in Analysis. II. Theory of Functions, Zeros, Polynomials, Determinants, Number Theory, Geometry, Springer-Verlag, Berlin, 1998
[7] Limitation of delayed feedback control in nonlinear discrete-time systems, IEEE Trans. Circ. Syst., Volume 43 (1996), pp. 815-816
Cited by Sources:
Comments - Policy