[Division de lʼalgèbre de Dickson par le module instable de Steinberg]
On détermine la division de lʼalgèbre de Dickson par le module instable de Steinberg dans la catégorie des modules instables sur lʼalgèbre de Steenrod modulo 2.
We compute the division of the Dickson algebra by the Steinberg unstable module in the category of unstable modules over the mod-2 Steenrod algebra.
Accepté le :
Publié le :
Nguyen Dang Ho Hai 1
@article{CRMATH_2013__351_11-12_425_0, author = {Nguyen Dang Ho Hai}, title = {Division of the {Dickson} algebra by the {Steinberg} unstable module}, journal = {Comptes Rendus. Math\'ematique}, pages = {425--428}, publisher = {Elsevier}, volume = {351}, number = {11-12}, year = {2013}, doi = {10.1016/j.crma.2013.07.010}, language = {en}, }
Nguyen Dang Ho Hai. Division of the Dickson algebra by the Steinberg unstable module. Comptes Rendus. Mathématique, Volume 351 (2013) no. 11-12, pp. 425-428. doi : 10.1016/j.crma.2013.07.010. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.07.010/
[1] A fundamental system of invariants of the general modular linear group with a solution of the form problem, Trans. Amer. Math. Soc., Volume 12 (1911) no. 1, pp. 75-98
[2] La fonction génératrice de Minc et une « conjecture de Segal » pour certains spectres de Thom, Adv. Math., Volume 225 (2010) no. 3, pp. 1431-1460
[3] Chevalley group theory and the transfer in the homology of symmetric groups, Topology, Volume 24 (1985) no. 3, pp. 247-264
[4] The rigidity of , Seattle, Wash., 1985 (Lecture Notes in Math.), Volume vol. 1286, Springer, Berlin (1987), pp. 286-292
[5] Sur les espaces fonctionnels dont la source est le classifiant dʼun p-groupe abélien élémentaire, Inst. Hautes Études Sci. Publ. Math., Volume 75 (1992), pp. 135-244 (With an appendix by Michel Zisman)
[6] Sur les foncteurs dérivés de la déstabilisation, Math. Z., Volume 194 (1987) no. 1, pp. 25-59
[7] Stable splittings derived from the Steinberg module, Topology, Volume 22 (1983) no. 3, pp. 285-298
[8] Unstable Modules over the Steenrod Algebra and Sullivanʼs Fixed Point Set Conjecture, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1994
[9] Prime power representations of finite linear groups, Canad. J. Math., Volume 8 (1956), pp. 580-591
Cité par Sources :
☆ This note was written while the author was a postdoctoral researcher (4/2011–4/2012) at “Institut de recherche en mathématique et physique” (IRMP) and was revised while the author was a visitor (9/2012) at “Vietnam Institute for Advanced Study in Mathematics” (VIASM). The author would like to thank both institutes for their hospitality.
Commentaires - Politique