[Analogues des groupes de Coxeter pour les solutions ensemblistes de lʼéquation de Yang–Baxter]
We attach with every finite, involutive, nondegenerate set-theoretic solution of the Yang–Baxter equation a finite group that plays for the associated structure group the role that a finite Coxeter group plays for the associated Artin–Tits group.
On associe à chaque solution ensembliste involutive et non dégénérée de lʼéquation de Yang–Baxter un groupe fini qui joue, pour le groupe de structure associé, le rôle que joue un groupe de Coxeter fini pour le groupe dʼArtin–Tits associé.
Accepté le :
Publié le :
Patrick Dehornoy 1
@article{CRMATH_2013__351_11-12_419_0, author = {Patrick Dehornoy}, title = {Coxeter-like groups for set-theoretic solutions of the {Yang{\textendash}Baxter} equation}, journal = {Comptes Rendus. Math\'ematique}, pages = {419--424}, publisher = {Elsevier}, volume = {351}, number = {11-12}, year = {2013}, doi = {10.1016/j.crma.2013.07.002}, language = {en}, }
Patrick Dehornoy. Coxeter-like groups for set-theoretic solutions of the Yang–Baxter equation. Comptes Rendus. Mathématique, Volume 351 (2013) no. 11-12, pp. 419-424. doi : 10.1016/j.crma.2013.07.002. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.07.002/
[1] Garside groups and Yang–Baxter equations, Commun. Algebra, Volume 38 (2010), pp. 4441-4460
[2] Finite quotients of groups of I-type | arXiv
[3] Groupes de Garside, Ann. Sci. Éc. Norm. Super., Volume 35 (2002), pp. 267-306
[4] Garside families and Garside germs, J. Algebra, Volume 380 (2013), pp. 109-145
[5] Set-theoretical solutions to the quantum Yang–Baxter equation, Duke Math. J., Volume 100 (1999), pp. 169-209
[6] Semigroups of I-type, J. Algebra, Volume 206 (1998), pp. 97-112
[7] Monoids and groups of I-type, Algebr. Represent. Theory, Volume 8 (2005), pp. 709-729
[8] Noetherian Semigroup Algebras, Algebra Appl., vol. 7, Springer-Verlag, 2007
[9] A decomposition theorem for square-free unitary solutions of the quantum Yang–Baxter equation, Adv. Math., Volume 193 (2005), p. 4055
- On some Garsideness properties of structure groups of set-theoretic solutions of the Yang-Baxter equation, Communications in Algebra, Volume 51 (2023) no. 8, pp. 3221-3231 | DOI:10.1080/00927872.2023.2180181 | Zbl:1517.20065
- The Yang-Baxter equation and Thompson's group
, International Journal of Algebra and Computation, Volume 33 (2023) no. 3, pp. 547-584 | DOI:10.1142/s0218196723500261 | Zbl:1522.20227 - An algorithmic construction of group automorphisms and the quantum Yang-Baxter equation, Communications in Algebra, Volume 46 (2018) no. 11, pp. 4710-4723 | DOI:10.1080/00927872.2018.1455098 | Zbl:1398.16033
- A new family of set-theoretic solutions of the Yang-Baxter equation, Communications in Algebra, Volume 46 (2018) no. 4, pp. 1622-1629 | DOI:10.1080/00927872.2017.1350700 | Zbl:1440.16038
- Left orders in Garside groups, International Journal of Algebra and Computation, Volume 26 (2016) no. 7, pp. 1349-1359 | DOI:10.1142/s0218196716500570 | Zbl:1357.20015
- Extensions of set-theoretic solutions of the Yang-Baxter equation and a conjecture of Gateva-Ivanova., Journal of Pure and Applied Algebra, Volume 220 (2016) no. 5, pp. 2064-2076 | DOI:10.1016/j.jpaa.2015.10.018 | Zbl:1337.16028
- Finite quotients of groups of I-type., Advances in Mathematics, Volume 258 (2014), pp. 46-68 | DOI:10.1016/j.aim.2014.02.009 | Zbl:1344.20051
Cité par 7 documents. Sources : zbMATH
Commentaires - Politique