[Stabilité
Dans cette Note, nous démontrons la stabilité
In this Note we prove the
Accepté le :
Publié le :
Michaël Ndjinga 1
@article{CRMATH_2013__351_17-18_707_0, author = {Micha\"el Ndjinga}, title = {$ {L}^{2}$ stability of nonlinear finite-volume schemes for linear hyperbolic systems}, journal = {Comptes Rendus. Math\'ematique}, pages = {707--711}, publisher = {Elsevier}, volume = {351}, number = {17-18}, year = {2013}, doi = {10.1016/j.crma.2013.09.008}, language = {en}, }
Michaël Ndjinga. $ {L}^{2}$ stability of nonlinear finite-volume schemes for linear hyperbolic systems. Comptes Rendus. Mathématique, Volume 351 (2013) no. 17-18, pp. 707-711. doi : 10.1016/j.crma.2013.09.008. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.09.008/
[1] On the conditioning of finite element equations with highly refined meshes, SIAM J. Numer. Anal., Volume 26 (1989), pp. 1383-1384
[2] Reflections on the evolution of implicit Navier–Stokes algorithms, Comput. Fluids, Volume 41 (2011), pp. 15-19
[3] Comparison of upwind and centered schemes for low Mach number flows, Finite Volumes for Complex Applications VI – Problems & Perspectives, Springer Proceedings in Mathematics, vol. 4, 2011
[4] Lax theorem and finite volume schemes, Math. Comput., Volume 247 (2004) no. 73
[5] Stability analysis of the cell centered finite-volume MUSCL method on unstructured grids, Numer. Math., Volume 113 (2009)
[6] Numerical Methods for Conservation Laws, Lectures in Mathematics, ETH Zürich, Birkhäuser, Basel, 1990
[7] Spectral stability of finite volume schemes for linear hyperbolic systems, C. R. Acad. Sci. Paris, Ser. I, Volume 349 (2011), pp. 1111-1115
[8] Systems of Conservation Laws I, Cambridge University Press, 1999
[9] Convergence de la méthode des volumes finis pour les systèmes de Friedrichs, C. R. Acad. Sci. Paris, Ser. I, Volume 325 (1997), pp. 671-676
Cité par Sources :
Commentaires - Politique