We study a class of algebraic surfaces of degree 3n in the complex projective space with only ordinary double points. They are obtained by using bivariate polynomials with complex coefficients related to the generalized cosine associated with the affine Weyl group of the root system .
Nous étudions une classe de surfaces algébriques de degré 3n dans ĺespace projectif complexe, avec seulement des points doubles ordinaires. Ils sont générés par des polynômes complexes qui sont liés au cosinus généralisé associé au groupe de Weyl affine du système de racines .
Accepted:
Published online:
Juan García Escudero 1
@article{CRMATH_2013__351_17-18_699_0, author = {Juan Garc{\'\i}a Escudero}, title = {On a family of complex algebraic surfaces of degree 3\protect\emph{n}}, journal = {Comptes Rendus. Math\'ematique}, pages = {699--702}, publisher = {Elsevier}, volume = {351}, number = {17-18}, year = {2013}, doi = {10.1016/j.crma.2013.09.009}, language = {en}, }
Juan García Escudero. On a family of complex algebraic surfaces of degree 3n. Comptes Rendus. Mathématique, Volume 351 (2013) no. 17-18, pp. 699-702. doi : 10.1016/j.crma.2013.09.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.09.009/
[1] Real line arrangements and surfaces with many real nodes (B. Jüttler; R. Piene, eds.), Geometric Modeling and Algebraic Geometry, Springer, Berlin, 2008, pp. 47-54
[2] Examples of projective surfaces with many singularities, J. Algebr. Geom., Volume 1 (1992), pp. 191-196
[3] Random tilings of spherical 3-manifolds, J. Geom. Phys., Volume 58 (2008), pp. 1451-1464
[4] A construction of algebraic surfaces with many real nodes, 2011 | arXiv
[5] Hypersurfaces with many -singularities: Explicit constructions, J. Comput. Appl. Math. (2013) (in press) | DOI
[6] Generalized Chebyshev polynomials associated with affine Weyl groups, Trans. Amer. Math. Soc., Volume 282 (1988), pp. 555-575
[7] Folding polynomials and their dynamics, Amer. Math. Monthly, Volume 95 (1988), pp. 399-413
Cited by Sources:
Comments - Policy