[Opérateurs de Ruelle et décroissance des corrélations pour des flots de contact dʼAnosov]
We prove strong spectral estimates for Ruelle transfer operators for arbitrary
On prouve des estimations spectrales fortes pour lʼopérateur de transfert de Ruelle relatif à des flots de contact dʼAnosov arbitraires de classe
Accepté le :
Publié le :
Luchezar Stoyanov 1
@article{CRMATH_2013__351_17-18_669_0, author = {Luchezar Stoyanov}, title = {Ruelle operators and decay of correlations for contact {Anosov} flows}, journal = {Comptes Rendus. Math\'ematique}, pages = {669--672}, publisher = {Elsevier}, volume = {351}, number = {17-18}, year = {2013}, doi = {10.1016/j.crma.2013.09.012}, language = {en}, }
Luchezar Stoyanov. Ruelle operators and decay of correlations for contact Anosov flows. Comptes Rendus. Mathématique, Volume 351 (2013) no. 17-18, pp. 669-672. doi : 10.1016/j.crma.2013.09.012. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.09.012/
[1] On decay of correlations in Anosov flows, Ann. Math., Volume 147 (1998), pp. 357-390
[2] Anosov flows and dynamical zeta functions, Ann. Math., Volume 178 (2013), pp. 687-773
[3] On contact Anosov flows, Ann. Math., Volume 159 (2004), pp. 1275-1312
[4] Zeta functions and the periodic orbit structure of hyperbolic dynamics, Astérisque, Volume 187–188 (1990), pp. 1-267
[5] Distribution of periods of closed trajectories in exponentially shrinking intervals, Commun. Math. Phys., Volume 310 (2012), pp. 675-704
[6] Exponential error terms for growth functions of negatively curved surfaces, Amer. J. Math., Volume 120 (1998), pp. 1019-1042
[7] Spectra of Ruelle transfer operators for Axiom A flows on basic sets, Nonlinearity, Volume 24 (2011), pp. 1089-1120
[8] Ruelle transfer operators for contact Anosov flows and decay of correlations (Preprint) | arXiv
- On convergence rates in the Birkhoff ergodic theorem, Siberian Mathematical Journal, Volume 65 (2024) no. 5, pp. 1170-1186 | DOI:10.1134/s0037446624050161 | Zbl:1557.37001
- Smooth mixing Anosov flows in dimension three are exponentially mixing, Annals of Mathematics. Second Series, Volume 197 (2023) no. 1, pp. 65-158 | DOI:10.4007/annals.2023.197.1.2 | Zbl:1511.37033
- Exponential decay of correlations for Gibbs measures and semiflows over
piecewise expanding maps, Annales Henri Poincaré, Volume 22 (2021) no. 7, pp. 2137-2159 | DOI:10.1007/s00023-020-00991-5 | Zbl:1481.37030 - Sharp large deviations for hyperbolic flows, Annales Henri Poincaré, Volume 21 (2020) no. 12, pp. 3791-3834 | DOI:10.1007/s00023-020-00956-8 | Zbl:1468.37030
- Noncommutative boundaries arising in dynamics and representations of the Cuntz relations, Numerical Functional Analysis and Optimization, Volume 41 (2020) no. 5, pp. 571-620 | DOI:10.1080/01630563.2019.1665544 | Zbl:1443.47086
- Dynamical properties of endomorphisms, multiresolutions, similarity and orthogonality relations, Discrete and Continuous Dynamical Systems. Series S, Volume 12 (2019) no. 8, pp. 2307-2348 | DOI:10.3934/dcdss.2019146 | Zbl:1447.81147
- Geodesic flows on negatively curved manifolds and the semi-classical zeta function, Sugaku Expositions, Volume 31 (2018) no. 1, pp. 69-92 | DOI:10.1090/suga/429 | Zbl:1391.37022
- Introduction and Examples, Transfer Operators, Endomorphisms, and Measurable Partitions, Volume 2217 (2018), p. 1 | DOI:10.1007/978-3-319-92417-5_1
- Pollicott-Ruelle resonances for open systems, Annales Henri Poincaré, Volume 17 (2016) no. 11, pp. 3089-3146 | DOI:10.1007/s00023-016-0491-8 | Zbl:1367.37038
- A thermodynamic formalism approach to the Selberg zeta function for Hecke triangle surfaces of infinite area, Communications in Mathematical Physics, Volume 337 (2015) no. 1, pp. 103-126 | DOI:10.1007/s00220-015-2304-1 | Zbl:1348.37042
- Ruelle operators and decay of correlations for contact Anosov flows, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 351 (2013) no. 17-18, pp. 669-672 | DOI:10.1016/j.crma.2013.09.012 | Zbl:1306.37025
Cité par 11 documents. Sources : Crossref, zbMATH
Commentaires - Politique