Comptes Rendus
Partial differential equations/Optimal control
Semicontinuous viscosity solutions for quasiconvex Hamiltonians
Comptes Rendus. Mathématique, Volume 351 (2013) no. 19-20, pp. 737-741.

The main theorem connecting convex Hamiltonians and semicontinuous viscosity solutions due to Barron and Jensen is extended to quasiconvex Hamiltonians. Some applications are indicated.

Le théorème principal reliant les hamiltoniens convexes et les solutions de viscosité semicontinues, due à Barron et Jensen, est étendu aux hamiltoniens quasi-convexes. Quelques applications sont indiquées.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2013.09.021

Emmanuel N. Barron 1

1 Department of Mathematics and Statistics, Loyola University Chicago, Chicago, IL 60660, USA
@article{CRMATH_2013__351_19-20_737_0,
     author = {Emmanuel N. Barron},
     title = {Semicontinuous viscosity solutions for quasiconvex {Hamiltonians}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {737--741},
     publisher = {Elsevier},
     volume = {351},
     number = {19-20},
     year = {2013},
     doi = {10.1016/j.crma.2013.09.021},
     language = {en},
}
TY  - JOUR
AU  - Emmanuel N. Barron
TI  - Semicontinuous viscosity solutions for quasiconvex Hamiltonians
JO  - Comptes Rendus. Mathématique
PY  - 2013
SP  - 737
EP  - 741
VL  - 351
IS  - 19-20
PB  - Elsevier
DO  - 10.1016/j.crma.2013.09.021
LA  - en
ID  - CRMATH_2013__351_19-20_737_0
ER  - 
%0 Journal Article
%A Emmanuel N. Barron
%T Semicontinuous viscosity solutions for quasiconvex Hamiltonians
%J Comptes Rendus. Mathématique
%D 2013
%P 737-741
%V 351
%N 19-20
%I Elsevier
%R 10.1016/j.crma.2013.09.021
%G en
%F CRMATH_2013__351_19-20_737_0
Emmanuel N. Barron. Semicontinuous viscosity solutions for quasiconvex Hamiltonians. Comptes Rendus. Mathématique, Volume 351 (2013) no. 19-20, pp. 737-741. doi : 10.1016/j.crma.2013.09.021. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.09.021/

[1] O. Alvarez; E. Barron; H. Ishii Hopf–Lax formulas for semicontinuous data, Indiana Univ. Math. J., Volume 48 (1999), pp. 993-1035

[2] M. Bardi; I. Capuzzo-Dolcetta Optimal Control and Viscosity Solutions of Hamilton–Jacobi–Bellman Equations, Birkhäuser Boston, Inc., Boston, MA, 1997

[3] G. Barles Solutions de viscosité des équations de Hamilton–Jacobi, Mathématiques et Applications, vol. 17, Springer, Paris, 1994

[4] E.N. Barron; R. Jensen Semicontinuous viscosity solutions of Hamilton–Jacobi equations with convex Hamiltonians, Comm. Partial Differential Equations, Volume 15 (1990) no. 12, pp. 1713-1740

[5] E.N. Barron; W. Liu Calculus of variations in L, Appl. Math. Optim., Volume 35 (1997), pp. 237-263

[6] E.N. Barron; W. Liu Semicontinuous solutions for Hamilton–Jacobi equations and the L control problem, Appl. Math. Optim., Volume 34 (1996), pp. 325-360

[7] E.N. Barron; R. Jensen; W. Liu Hopf–Lax formula for ut+H(u,Du)=0: II, Comm. Partial Differential Equations, Volume 22 (1997), pp. 1141-1160

[8] H. Frankowska Lower semicontinuous solutions of Hamilton–Jacobi–Bellman equations, SIAM J. Control Optim., Volume 31 (1993) no. 1, pp. 257-272

[9] H. Ishii A generalization of a theorem of Barron and Jensen and a comparison theorem for lower semicontinuous viscosity solutions, Proc. R. Soc. Edinb. A, Volume 131 (2001) no. 1, pp. 137-154

[10] P. Soravia Discontinuous viscosity solutions to Dirichlet problems for Hamilton–Jacobi equations with convex Hamiltonians, Comm. Partial Differential Equations, Volume 18 (1993), pp. 1493-1514

Cited by Sources:

Comments - Policy