Comptes Rendus
Functional analysis
Honesty in discrete, nonlocal and randomly position structured fragmentation model with unbounded rates
[Honnêteté dans un modèle discret non local de fragmentation structurée aléatoire en espace dans le cas de taux non bornés]
Comptes Rendus. Mathématique, Volume 351 (2013) no. 19-20, pp. 753-759.

Dans un processus dʼagrégation discret non local, un problème fondamental se pose lorsque chaque taux de fragmentation tend vers lʼinfini à lʼinfini. Dans cette Note, on étudie le problème de Cauchy discret dans le cas où les taux de fragmentation décrivent des processus de fragmentation multiple au moyen dʼopérateurs dépendant de paramètres et de la théorie des semi-groupes sous-stochastiques dépendant dʼun paramètre. On se concentre sur le cas où les taux de fragmentation dépendent de la dimension et de la position et où de nouvelles particules sont distribuées de manière aléatoire suivant une certaine loi de probabilité. À la différence de [8], qui traite dʼun modèle discret à taux de fragmentation borné, on utilise le théorème de Kato dans le cas L1 [2] et le théorème de la convergence dominée [4] pour démontrer lʼexistence dʼun générateur infinitésimal dʼun semi-groupe de contactions positif ; on donne des conditions suffisantes dʼhonnêteté dans le cas de taux de fragmentation non bornés. Fondamentalement, on démontre que, même dans le cas discret et non local, le processus est conservatif si, à lʼinfini, les particules filles tendent à rentrer dans le système avec une grande probabilité.

In the process of discrete and nonlocal aggregation, the major problem arises when each fragmentation rate becomes infinite at infinity. In this paper, a discrete Cauchy problem describing multiple fragmentation processes is investigated by means of parameter-dependent operators together with the theory of substochastic semigroups with a parameter. We focus on the case where fragmentation rates are size and position dependent and where new particles are spatially randomly distributed according to a certain probabilistic law. Unlike [8], where the discrete model with bounded fragmentation rates is treated, we use, in this paper, Katoʼs theorem in L1 [2] and the dominated convergence theorem [4] to show the existence of the infinitesimal generator of a positive semigroup of contractions and give sufficient conditions for honesty in the case of unbounded fragmentation rates. Essentially, we demonstrate that, even in the discrete and nonlocal case, the process is conservative if at infinity daughter particles tend to go back into the system with a high probability.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2013.09.023
Emile Franc Doungmo Goufo 1 ; Suares Clovis Oukouomi Noutchie 1

1 Department of Mathematical Sciences, North-West University, Mafikeng, South Africa
@article{CRMATH_2013__351_19-20_753_0,
     author = {Emile Franc Doungmo Goufo and Suares Clovis Oukouomi Noutchie},
     title = {Honesty in discrete, nonlocal and randomly position structured fragmentation model with unbounded rates},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {753--759},
     publisher = {Elsevier},
     volume = {351},
     number = {19-20},
     year = {2013},
     doi = {10.1016/j.crma.2013.09.023},
     language = {en},
}
TY  - JOUR
AU  - Emile Franc Doungmo Goufo
AU  - Suares Clovis Oukouomi Noutchie
TI  - Honesty in discrete, nonlocal and randomly position structured fragmentation model with unbounded rates
JO  - Comptes Rendus. Mathématique
PY  - 2013
SP  - 753
EP  - 759
VL  - 351
IS  - 19-20
PB  - Elsevier
DO  - 10.1016/j.crma.2013.09.023
LA  - en
ID  - CRMATH_2013__351_19-20_753_0
ER  - 
%0 Journal Article
%A Emile Franc Doungmo Goufo
%A Suares Clovis Oukouomi Noutchie
%T Honesty in discrete, nonlocal and randomly position structured fragmentation model with unbounded rates
%J Comptes Rendus. Mathématique
%D 2013
%P 753-759
%V 351
%N 19-20
%I Elsevier
%R 10.1016/j.crma.2013.09.023
%G en
%F CRMATH_2013__351_19-20_753_0
Emile Franc Doungmo Goufo; Suares Clovis Oukouomi Noutchie. Honesty in discrete, nonlocal and randomly position structured fragmentation model with unbounded rates. Comptes Rendus. Mathématique, Volume 351 (2013) no. 19-20, pp. 753-759. doi : 10.1016/j.crma.2013.09.023. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.09.023/

[1] J. Banasiak Kinetic-type models with diffusion: Conservative and nonconservative solutions, Transp. Theory Stat. Phys., Volume 36 (2007) no. 1, pp. 43-65

[2] J. Banasiak; L. Arlotti Perturbations of Positive Semigroups with Applications, Springer Monographs in Mathematics, 2006

[3] J. Banasiak; W. Lamb The discrete fragmentation equation: semigroups, compactness and asynchronous exponential growth, Kinet. Relat. Models, Volume 5 (June 2012) no. 2

[4] R.G. Bartle The Elements of Integration and Lebesgue Measure, Wiley–Interscience Publisher, 1995

[5] C.R. Garibotti; G. Spiga Boltzmann equation for inelastic scattering, J. Phys. A, Volume 27 (1994), pp. 2709-2717

[6] B. Haas Loss of mass in deterministic and random fragmentation, Stochastic Process. Appl., Volume 106 (August 2003) no. 2, pp. 245-277

[7] A. Majorana; C. Milazzo Space homogeneous solutions of the linear semiconductor Boltzmann equation, J. Math. Anal. Appl., Volume 259 (2001) no. 2, pp. 609-629

[8] S.C. Oukouomi Noutchie; E.F. Doungmo Goufo On the honesty in nonlocal and discrete fragmentation dynamics in size and random position, ISRN Math. Anal., Volume 2013 (2013) (Article ID 908753, 7 p.) | DOI

[9] W. Wagner Explosion phenomena in stochastic coagulation-fragmentation models, Ann. Appl. Probab., Volume 15 (2005) no. 3, pp. 2081-2112

[10] R.M. Ziff; E.D. McGrady The kinetics of cluster fragmentation and depolymerization, J. Phys. A, Volume 18 (1985), pp. 3027-3037

[11] R.M. Ziff; E.D. McGrady “Shattering” transition in fragmentation, Phys. Rev. Lett., Volume 58 (1987) no. 9, pp. 892-895

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

On conservativity and shattering for an equation of phytoplankton dynamics

Jacek Banasiak

C. R. Biol (2004)