We prove that every analytic subset of admits approximation by algebraic sets in .
On démontre que tout sous-ensemble analytique de possède une approximation par un sous-ensemble algébrique de .
Accepted:
Published online:
Marcin Bilski 1
@article{CRMATH_2013__351_21-22_793_0,
author = {Marcin Bilski},
title = {Algebraic approximation of analytic subsets of $ {\mathbb{C}}^{q}\times \{0\}$ in $ {\mathbb{C}}^{q+1}$},
journal = {Comptes Rendus. Math\'ematique},
pages = {793--796},
year = {2013},
publisher = {Elsevier},
volume = {351},
number = {21-22},
doi = {10.1016/j.crma.2013.10.011},
language = {en},
}
TY - JOUR
AU - Marcin Bilski
TI - Algebraic approximation of analytic subsets of $ {\mathbb{C}}^{q}\times \{0\}$ in $ {\mathbb{C}}^{q+1}$
JO - Comptes Rendus. Mathématique
PY - 2013
SP - 793
EP - 796
VL - 351
IS - 21-22
PB - Elsevier
DO - 10.1016/j.crma.2013.10.011
LA - en
ID - CRMATH_2013__351_21-22_793_0
ER -
Marcin Bilski. Algebraic approximation of analytic subsets of $ {\mathbb{C}}^{q}\times \{0\}$ in $ {\mathbb{C}}^{q+1}$. Comptes Rendus. Mathématique, Volume 351 (2013) no. 21-22, pp. 793-796. doi: 10.1016/j.crma.2013.10.011
[1] On Nash approximation of complex analytic sets in Runge domains, 2013 (preprint) | arXiv
[2] On approximating submanifolds by algebraic sets and a solution to the Nash conjecture, Invent. Math., Volume 107 (1992), pp. 87-98
[3] Algebraic approximation of structures over complete local rings, Publ. Math. IHÉS, Volume 36 (1969), pp. 23-58
[4] Espace analytique réduit des cycles analytiques complexes compacts dʼun espace analytique complexe de dimension finie, Sém. François Norguet, 1974–1975 (Lect. Notes Math.), Volume vol. 482, Springer, Berlin (1975), pp. 1-158
[5] Approximation of analytic sets with proper projection by algebraic sets, Constr. Approx., Volume 35 (2012) no. 3, pp. 273-291
[6] Complex Analytic Sets, Kluwer Academic Publishers Group, Dordrecht, The Netherlands, 1989
[7] Algebraic approximations of holomorphic maps from Stein domains to projective manifolds, Duke Math. J., Volume 76 (1994) no. 2, pp. 333-363
[8] The approximation of instantons, Geom. Funct. Anal., Volume 3 (1993) no. 2, pp. 179-200
[9] Survey of Oka theory, N.Y. J. Math., Volume 17A (2011), pp. 11-38
[10] A Runge approximation theorem for pseudo-holomorphic maps, Geom. Funct. Anal., Volume 22 (2012) no. 2, pp. 311-351
[11] An Introduction to Complex Analysis in Several Variables, North-Holland Publishing Co., Amsterdam, 1990
[12] The Runge approximation problem for holomorphic maps into Grassmannians, Math. Z., Volume 218 (1995) no. 3, pp. 343-348
[13] Algebraic approximations in analytic geometry, Invent. Math., Volume 121 (1995) no. 2, pp. 335-353
[14] Approximation in , Surv. Approx. Theory, Volume 2 (2006), pp. 92-140
[15] Topological equivalence between analytic and algebraic sets, Bull. Pol. Acad. Sci., Math., Volume 32 (1984), pp. 393-400
[16] Algebraic domains in Stein manifolds, New Haven, CT, 1983 (Contemp. Math.), Volume vol. 32, Amer. Math. Soc., Providence, RI (1984), pp. 259-266
[17] Some remarks on the semi-local extension of Nash maps, Ann. Univ. Ferrara, Sez. 7: Sci. Mat., Volume 43 (1997), pp. 51-63
[18] Relative approximation theorems of Stein manifolds by Nash manifolds, Boll. Unione Mat. Ital., A (7), Volume 3 (1989), pp. 343-350
[19] On the relative Nash approximation of analytic maps, Rev. Mat. Complut., Volume 11 (1998) no. 1, pp. 185-200
[20] Intersections of analytic sets with linear subspaces, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (4), Volume 17 (1990), pp. 227-271
[21] Intersection theory in complex analytic geometry, Ann. Pol. Math., Volume 62 (1995) no. 2, pp. 177-191
[22] Continuity of intersection of analytic sets, Ann. Pol. Math., Volume 42 (1983), pp. 387-393
[23] Local properties of analytic varieties, Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse), Princeton Univ. Press, Princeton, NJ, 1965, pp. 205-244
Cited by Sources:
Comments - Policy
