It is proved that either every special projective vector field V on a Randers space is a conformal vector field of the Riemannian metric , or F is of isotropic S-curvature. This result is applied to establish a projective Lichnérowicz–Obata-type result on the closed manifolds with generic Randers metrics.
On prouve que, soit chaque champ projectif de vecteurs sur un espace de Randers est conforme à la métrique riemanienne , soit F est à S-courbure isotrope. Ce résultat est appliqué à lʼétablissement dʼun théorème de type de Lichnérowicz–Obata sur les variétés fermées de Randers.
Accepted:
Published online:
Mehdi Rafie-Rad 1, 2
@article{CRMATH_2013__351_23-24_927_0, author = {Mehdi Rafie-Rad}, title = {Special projective {Lichn\'erowicz{\textendash}Obata} theorem for {Randers} spaces}, journal = {Comptes Rendus. Math\'ematique}, pages = {927--930}, publisher = {Elsevier}, volume = {351}, number = {23-24}, year = {2013}, doi = {10.1016/j.crma.2013.10.012}, language = {en}, }
Mehdi Rafie-Rad. Special projective Lichnérowicz–Obata theorem for Randers spaces. Comptes Rendus. Mathématique, Volume 351 (2013) no. 23-24, pp. 927-930. doi : 10.1016/j.crma.2013.10.012. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.10.012/
[1] Champs de vecteurs projectifs sur le fibré unitaire, J. Math. Pures Appl., Volume 65 (1986), pp. 47-79
[2] On the flag curvature of Finsler metrics of scalar curvature, J. Lond. Math. Soc., Volume 68 (2003), pp. 762-780
[3] Randers metrics with special curvature properties, Osaka J. Math., Volume 40 (2003), pp. 87-101
[4] On projective equivalence and pointwise projective relation of Randers metrics, Int. J. Math., Volume 23 (2012) no. 9, p. 1250093 (14 pages)
[5] Some new characterizations of projective Randers metrics with constant S-curvature, J. Geom. Phys., Volume 9 (2012) no. 4, pp. 272-278
[6] Special projective algebra of Randers metrics of constant S-curvature, Int. J. Geom. Methods Mod. Phys., Volume 6 (2012) no. 2
[7] On the projective algebra of Randers metrics of constant flag curvature, SIGMA, Volume 7 (2011), p. 085 (12 pages)
Cited by Sources:
Comments - Policy