[Lʼespace
Dans cette Note, on montre comment définir lʼanalogue de lʼespace classique
In this Note, we show how the analogue of the classical space
Publié le :
Philippe G. Ciarlet 1 ; Oana Iosifescu 2
@article{CRMATH_2013__351_23-24_943_0, author = {Philippe G. Ciarlet and Oana Iosifescu}, title = {The space $ \mathit{H}(\mathrm{div},\cdot )$ on a surface {\textendash} {Application} to {Donati-like} compatibility conditions on a surface}, journal = {Comptes Rendus. Math\'ematique}, pages = {943--947}, publisher = {Elsevier}, volume = {351}, number = {23-24}, year = {2013}, doi = {10.1016/j.crma.2013.10.023}, language = {en}, }
TY - JOUR AU - Philippe G. Ciarlet AU - Oana Iosifescu TI - The space $ \mathit{H}(\mathrm{div},\cdot )$ on a surface – Application to Donati-like compatibility conditions on a surface JO - Comptes Rendus. Mathématique PY - 2013 SP - 943 EP - 947 VL - 351 IS - 23-24 PB - Elsevier DO - 10.1016/j.crma.2013.10.023 LA - en ID - CRMATH_2013__351_23-24_943_0 ER -
%0 Journal Article %A Philippe G. Ciarlet %A Oana Iosifescu %T The space $ \mathit{H}(\mathrm{div},\cdot )$ on a surface – Application to Donati-like compatibility conditions on a surface %J Comptes Rendus. Mathématique %D 2013 %P 943-947 %V 351 %N 23-24 %I Elsevier %R 10.1016/j.crma.2013.10.023 %G en %F CRMATH_2013__351_23-24_943_0
Philippe G. Ciarlet; Oana Iosifescu. The space $ \mathit{H}(\mathrm{div},\cdot )$ on a surface – Application to Donati-like compatibility conditions on a surface. Comptes Rendus. Mathématique, Volume 351 (2013) no. 23-24, pp. 943-947. doi : 10.1016/j.crma.2013.10.023. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.10.023/
[1] Sur lʼellipticité du modèle linéaire de coques de W.T. Koiter (R. Glowinski; J.-L. Lions, eds.), Computing Methods in Applied Sciences and Engineering, Springer, 1976, pp. 89-136
[2] Existence theorems for two-dimensional linear shell theories, J. Elast., Volume 34 (1994), pp. 111-138
[3] Mixed and Hybrid Finite Element Methods, Springer, 1991
[4] Donati compatibility conditions on a surface – Application to shell theory, J. Math. Pures Appl. (2014) (in press)
[5] Greenʼs formulas with little regularity on a surface – Application to Donati-like compatibility conditions on a surface, C. R. Acad. Sci. Paris, Ser. I, Volume 351 (2013) no. 21–22, pp. 853-858
[6] Intrinsic formulation of the displacement-traction problem in linearized elasticity, Math. Models Methods Appl. Sci. (2014) (in press)
[7] Some remarks on the compatibility conditions in elasticity, Accad. Naz. Sci. XL Mem. Math. Appl., Volume 29 (2005), pp. 175-182
[8] Functional spaces for Norton–Hoff materials, Math. Methods Appl. Sci., Volume 8 (1986), pp. 206-222
[9] Finite Element Methods for Navier–Stokes Equations. Theory and Algorithms, Springer-Verlag, Berlin, 1986
Cité par Sources :
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier