[Lʼespace sur une surface – Application à des conditions de compatibilité du type de Donati sur une surface]
Dans cette Note, on montre comment définir lʼanalogue de lʼespace classique sur une surface. On établit ensuite diverses propriétés de cet espace, en particulier lʼexistence dʼune formule de Green fondamentale satisfaite par ses éléments. Ces résultats sont ensuite utilisés pour identifier des conditions de compatibilité du type de Donati sur une surface.
In this Note, we show how the analogue of the classical space can be defined on a surface. We then establish several properties of this space, notably the existence of a basic Greenʼs formula satisfied by its elements. These results are then used for identifying Donati-like compatibility conditions on a surface.
Publié le :
Philippe G. Ciarlet 1 ; Oana Iosifescu 2
@article{CRMATH_2013__351_23-24_943_0, author = {Philippe G. Ciarlet and Oana Iosifescu}, title = {The space $ \mathit{H}(\mathrm{div},\cdot )$ on a surface {\textendash} {Application} to {Donati-like} compatibility conditions on a surface}, journal = {Comptes Rendus. Math\'ematique}, pages = {943--947}, publisher = {Elsevier}, volume = {351}, number = {23-24}, year = {2013}, doi = {10.1016/j.crma.2013.10.023}, language = {en}, }
TY - JOUR AU - Philippe G. Ciarlet AU - Oana Iosifescu TI - The space $ \mathit{H}(\mathrm{div},\cdot )$ on a surface – Application to Donati-like compatibility conditions on a surface JO - Comptes Rendus. Mathématique PY - 2013 SP - 943 EP - 947 VL - 351 IS - 23-24 PB - Elsevier DO - 10.1016/j.crma.2013.10.023 LA - en ID - CRMATH_2013__351_23-24_943_0 ER -
%0 Journal Article %A Philippe G. Ciarlet %A Oana Iosifescu %T The space $ \mathit{H}(\mathrm{div},\cdot )$ on a surface – Application to Donati-like compatibility conditions on a surface %J Comptes Rendus. Mathématique %D 2013 %P 943-947 %V 351 %N 23-24 %I Elsevier %R 10.1016/j.crma.2013.10.023 %G en %F CRMATH_2013__351_23-24_943_0
Philippe G. Ciarlet; Oana Iosifescu. The space $ \mathit{H}(\mathrm{div},\cdot )$ on a surface – Application to Donati-like compatibility conditions on a surface. Comptes Rendus. Mathématique, Volume 351 (2013) no. 23-24, pp. 943-947. doi : 10.1016/j.crma.2013.10.023. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.10.023/
[1] Sur lʼellipticité du modèle linéaire de coques de W.T. Koiter (R. Glowinski; J.-L. Lions, eds.), Computing Methods in Applied Sciences and Engineering, Springer, 1976, pp. 89-136
[2] Existence theorems for two-dimensional linear shell theories, J. Elast., Volume 34 (1994), pp. 111-138
[3] Mixed and Hybrid Finite Element Methods, Springer, 1991
[4] Donati compatibility conditions on a surface – Application to shell theory, J. Math. Pures Appl. (2014) (in press)
[5] Greenʼs formulas with little regularity on a surface – Application to Donati-like compatibility conditions on a surface, C. R. Acad. Sci. Paris, Ser. I, Volume 351 (2013) no. 21–22, pp. 853-858
[6] Intrinsic formulation of the displacement-traction problem in linearized elasticity, Math. Models Methods Appl. Sci. (2014) (in press)
[7] Some remarks on the compatibility conditions in elasticity, Accad. Naz. Sci. XL Mem. Math. Appl., Volume 29 (2005), pp. 175-182
[8] Functional spaces for Norton–Hoff materials, Math. Methods Appl. Sci., Volume 8 (1986), pp. 206-222
[9] Finite Element Methods for Navier–Stokes Equations. Theory and Algorithms, Springer-Verlag, Berlin, 1986
Cité par Sources :
Commentaires - Politique