Comptes Rendus
Mathematical problems in mechanics
The space H(div,) on a surface – Application to Donati-like compatibility conditions on a surface
[Lʼespace H(div,) sur une surface – Application à des conditions de compatibilité du type de Donati sur une surface]
Comptes Rendus. Mathématique, Volume 351 (2013) no. 23-24, pp. 943-947.

Dans cette Note, on montre comment définir lʼanalogue de lʼespace classique H(div,) sur une surface. On établit ensuite diverses propriétés de cet espace, en particulier lʼexistence dʼune formule de Green fondamentale satisfaite par ses éléments. Ces résultats sont ensuite utilisés pour identifier des conditions de compatibilité du type de Donati sur une surface.

In this Note, we show how the analogue of the classical space H(div,) can be defined on a surface. We then establish several properties of this space, notably the existence of a basic Greenʼs formula satisfied by its elements. These results are then used for identifying Donati-like compatibility conditions on a surface.

Accepté le :
Publié le :
DOI : 10.1016/j.crma.2013.10.023

Philippe G. Ciarlet 1 ; Oana Iosifescu 2

1 Department of Mathematics, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
2 Départment de Mathématiques, Université de Montpellier-2, place Eugène-Bataillon, 34095 Montpellier cedex 5, France
@article{CRMATH_2013__351_23-24_943_0,
     author = {Philippe G. Ciarlet and Oana Iosifescu},
     title = {The space $ \mathit{H}(\mathrm{div},\cdot )$ on a surface {\textendash} {Application} to {Donati-like} compatibility conditions on a surface},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {943--947},
     publisher = {Elsevier},
     volume = {351},
     number = {23-24},
     year = {2013},
     doi = {10.1016/j.crma.2013.10.023},
     language = {en},
}
TY  - JOUR
AU  - Philippe G. Ciarlet
AU  - Oana Iosifescu
TI  - The space $ \mathit{H}(\mathrm{div},\cdot )$ on a surface – Application to Donati-like compatibility conditions on a surface
JO  - Comptes Rendus. Mathématique
PY  - 2013
SP  - 943
EP  - 947
VL  - 351
IS  - 23-24
PB  - Elsevier
DO  - 10.1016/j.crma.2013.10.023
LA  - en
ID  - CRMATH_2013__351_23-24_943_0
ER  - 
%0 Journal Article
%A Philippe G. Ciarlet
%A Oana Iosifescu
%T The space $ \mathit{H}(\mathrm{div},\cdot )$ on a surface – Application to Donati-like compatibility conditions on a surface
%J Comptes Rendus. Mathématique
%D 2013
%P 943-947
%V 351
%N 23-24
%I Elsevier
%R 10.1016/j.crma.2013.10.023
%G en
%F CRMATH_2013__351_23-24_943_0
Philippe G. Ciarlet; Oana Iosifescu. The space $ \mathit{H}(\mathrm{div},\cdot )$ on a surface – Application to Donati-like compatibility conditions on a surface. Comptes Rendus. Mathématique, Volume 351 (2013) no. 23-24, pp. 943-947. doi : 10.1016/j.crma.2013.10.023. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.10.023/

[1] M. Bernadou; P.G. Ciarlet Sur lʼellipticité du modèle linéaire de coques de W.T. Koiter (R. Glowinski; J.-L. Lions, eds.), Computing Methods in Applied Sciences and Engineering, Springer, 1976, pp. 89-136

[2] M. Bernadou; P.G. Ciarlet; B. Miara Existence theorems for two-dimensional linear shell theories, J. Elast., Volume 34 (1994), pp. 111-138

[3] F. Brezzi; M. Fortin Mixed and Hybrid Finite Element Methods, Springer, 1991

[4] P.G. Ciarlet; O. Iosifescu Donati compatibility conditions on a surface – Application to shell theory, J. Math. Pures Appl. (2014) (in press)

[5] P.G. Ciarlet; O. Iosifescu Greenʼs formulas with little regularity on a surface – Application to Donati-like compatibility conditions on a surface, C. R. Acad. Sci. Paris, Ser. I, Volume 351 (2013) no. 21–22, pp. 853-858

[6] P.G. Ciarlet; C. Mardare Intrinsic formulation of the displacement-traction problem in linearized elasticity, Math. Models Methods Appl. Sci. (2014) (in press)

[7] G. Geymonat; F. Krasucki Some remarks on the compatibility conditions in elasticity, Accad. Naz. Sci. XL Mem. Math. Appl., Volume 29 (2005), pp. 175-182

[8] G. Geymonat; P. Suquet Functional spaces for Norton–Hoff materials, Math. Methods Appl. Sci., Volume 8 (1986), pp. 206-222

[9] V. Girault; P.A. Raviart Finite Element Methods for Navier–Stokes Equations. Theory and Algorithms, Springer-Verlag, Berlin, 1986

Cité par Sources :

Commentaires - Politique