Comptes Rendus
Numerical analysis
A model-data weak formulation for simultaneous estimation of state and model bias
Comptes Rendus. Mathématique, Volume 351 (2013) no. 23-24, pp. 937-941.

We introduce a Petrov–Galerkin regularized saddle approximation which incorporates a “model” (partial differential equation) and “data” (M experimental observations) to yield estimates for both state and model bias. We provide an a priori theory that identifies two distinct contributions to the reduction in the error in state as a function of the number of observations, M: the stability constant increases with M; the model-bias best-fit error decreases with M. We present results for a synthetic Helmholtz problem and an actual acoustics system.

Nous présentons une approximation de Petrov–Galerkin pour un problème de point selle incorporant un « modèle » (équation aux dérivées partielles) et des « données » (M observations expérimentales) afin dʼobtenir une estimation conjointe de la variable dʼétat et du biais de modèle. Notre théorie a priori identifie deux contributions à la décroissance de lʼerreur sur lʼétat en fonction du nombre dʼobservations expérimentales, M : la croissance de la constante stabilité avec M ; la décroissance de lʼestimation par moindre carré du biais de modèle avec M. Nous présentons des résultats pour un problème de Helmholtz synthétique ainsi que pour un système acoustique réel.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2013.10.034

Masayuki Yano 1; James D. Penn 1; Anthony T. Patera 1

1 Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
@article{CRMATH_2013__351_23-24_937_0,
     author = {Masayuki Yano and James D. Penn and Anthony T. Patera},
     title = {A model-data weak formulation for simultaneous estimation of state and model bias},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {937--941},
     publisher = {Elsevier},
     volume = {351},
     number = {23-24},
     year = {2013},
     doi = {10.1016/j.crma.2013.10.034},
     language = {en},
}
TY  - JOUR
AU  - Masayuki Yano
AU  - James D. Penn
AU  - Anthony T. Patera
TI  - A model-data weak formulation for simultaneous estimation of state and model bias
JO  - Comptes Rendus. Mathématique
PY  - 2013
SP  - 937
EP  - 941
VL  - 351
IS  - 23-24
PB  - Elsevier
DO  - 10.1016/j.crma.2013.10.034
LA  - en
ID  - CRMATH_2013__351_23-24_937_0
ER  - 
%0 Journal Article
%A Masayuki Yano
%A James D. Penn
%A Anthony T. Patera
%T A model-data weak formulation for simultaneous estimation of state and model bias
%J Comptes Rendus. Mathématique
%D 2013
%P 937-941
%V 351
%N 23-24
%I Elsevier
%R 10.1016/j.crma.2013.10.034
%G en
%F CRMATH_2013__351_23-24_937_0
Masayuki Yano; James D. Penn; Anthony T. Patera. A model-data weak formulation for simultaneous estimation of state and model bias. Comptes Rendus. Mathématique, Volume 351 (2013) no. 23-24, pp. 937-941. doi : 10.1016/j.crma.2013.10.034. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.10.034/

[1] J. Antoni A Bayesian approach to sound source reconstruction: optimal basis, regularization, and focusing, J. Acoust. Soc. Amer., Volume 131 (2012), pp. 2873-2890

[2] W. Dahmen; C. Plesken; G. Welper Double greedy algorithms: reduced basis methods for transport dominated problems, Math. Model. Numer. Anal. (2013) (in press) | DOI

[3] L.F. Demkowicz; J. Gopalakrishnan A class of discontinuous Petrov–Galerkin methods. Part I: The transport equation, Comput. Methods Appl. Mech. Eng., Volume 23–24 (2010), pp. 1558-1572

[4] G. Franceschini; S. Macchietto Model-based design of experiments for parameter precision: state of the art, Chem. Eng. Sci., Volume 63 (2008), pp. 4846-4872

[5] R.E. Kalman A new approach to linear filtering and prediction problems, Trans. ASME – J. Basic Eng., Ser. D, Volume 82 (1960), pp. 35-45

[6] Z.L. Li; I.M. Navon Optimality of variational data assimilation and its relationship with the Kalman filter and smoother, Q. J. Roy. Meteor. Soc., Volume 127 (2001), pp. 661-683

[7] A.C. Lorenc A global three-dimensional multivariate statistical interpolation scheme, Mon. Weather Rev., Volume 109 (1981), pp. 701-721

[8] Y. Maday; N.C. Nguyen; A.T. Patera; G.S.H. Pau A general multipurpose interpolation procedure: the magic points, Commun. Pure Appl. Math., Volume 8 (2009) no. 1, pp. 383-404

[9] A.T. Patera; E.M. Rønquist Regression on parametric manifolds: estimation of spatial field, functional outputs, and parameters from noisy data, C. R. Acad. Sci. Paris, Ser. I, Volume 350 (2012), pp. 543-547

[10] A. Quarteroni; A. Valli Numerical Approximation of Partial Differential Equations, Springer, New York, 1997

[11] M. Yano; J.D. Penn; A.T. Patera A model-data weak formulation for estimation of state and model bias; application to acoustics, Math. Model. Numer. Anal. (2013) (in preparation)

Cited by Sources:

Comments - Policy