We introduce a Petrov–Galerkin regularized saddle approximation which incorporates a “model” (partial differential equation) and “data” (M experimental observations) to yield estimates for both state and model bias. We provide an a priori theory that identifies two distinct contributions to the reduction in the error in state as a function of the number of observations, M: the stability constant increases with M; the model-bias best-fit error decreases with M. We present results for a synthetic Helmholtz problem and an actual acoustics system.
Nous présentons une approximation de Petrov–Galerkin pour un problème de point selle incorporant un « modèle » (équation aux dérivées partielles) et des « données » (M observations expérimentales) afin dʼobtenir une estimation conjointe de la variable dʼétat et du biais de modèle. Notre théorie a priori identifie deux contributions à la décroissance de lʼerreur sur lʼétat en fonction du nombre dʼobservations expérimentales, M : la croissance de la constante stabilité avec M ; la décroissance de lʼestimation par moindre carré du biais de modèle avec M. Nous présentons des résultats pour un problème de Helmholtz synthétique ainsi que pour un système acoustique réel.
Accepted:
Published online:
Masayuki Yano 1; James D. Penn 1; Anthony T. Patera 1
@article{CRMATH_2013__351_23-24_937_0, author = {Masayuki Yano and James D. Penn and Anthony T. Patera}, title = {A model-data weak formulation for simultaneous estimation of state and model bias}, journal = {Comptes Rendus. Math\'ematique}, pages = {937--941}, publisher = {Elsevier}, volume = {351}, number = {23-24}, year = {2013}, doi = {10.1016/j.crma.2013.10.034}, language = {en}, }
TY - JOUR AU - Masayuki Yano AU - James D. Penn AU - Anthony T. Patera TI - A model-data weak formulation for simultaneous estimation of state and model bias JO - Comptes Rendus. Mathématique PY - 2013 SP - 937 EP - 941 VL - 351 IS - 23-24 PB - Elsevier DO - 10.1016/j.crma.2013.10.034 LA - en ID - CRMATH_2013__351_23-24_937_0 ER -
%0 Journal Article %A Masayuki Yano %A James D. Penn %A Anthony T. Patera %T A model-data weak formulation for simultaneous estimation of state and model bias %J Comptes Rendus. Mathématique %D 2013 %P 937-941 %V 351 %N 23-24 %I Elsevier %R 10.1016/j.crma.2013.10.034 %G en %F CRMATH_2013__351_23-24_937_0
Masayuki Yano; James D. Penn; Anthony T. Patera. A model-data weak formulation for simultaneous estimation of state and model bias. Comptes Rendus. Mathématique, Volume 351 (2013) no. 23-24, pp. 937-941. doi : 10.1016/j.crma.2013.10.034. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.10.034/
[1] A Bayesian approach to sound source reconstruction: optimal basis, regularization, and focusing, J. Acoust. Soc. Amer., Volume 131 (2012), pp. 2873-2890
[2] Double greedy algorithms: reduced basis methods for transport dominated problems, Math. Model. Numer. Anal. (2013) (in press) | DOI
[3] A class of discontinuous Petrov–Galerkin methods. Part I: The transport equation, Comput. Methods Appl. Mech. Eng., Volume 23–24 (2010), pp. 1558-1572
[4] Model-based design of experiments for parameter precision: state of the art, Chem. Eng. Sci., Volume 63 (2008), pp. 4846-4872
[5] A new approach to linear filtering and prediction problems, Trans. ASME – J. Basic Eng., Ser. D, Volume 82 (1960), pp. 35-45
[6] Optimality of variational data assimilation and its relationship with the Kalman filter and smoother, Q. J. Roy. Meteor. Soc., Volume 127 (2001), pp. 661-683
[7] A global three-dimensional multivariate statistical interpolation scheme, Mon. Weather Rev., Volume 109 (1981), pp. 701-721
[8] A general multipurpose interpolation procedure: the magic points, Commun. Pure Appl. Math., Volume 8 (2009) no. 1, pp. 383-404
[9] Regression on parametric manifolds: estimation of spatial field, functional outputs, and parameters from noisy data, C. R. Acad. Sci. Paris, Ser. I, Volume 350 (2012), pp. 543-547
[10] Numerical Approximation of Partial Differential Equations, Springer, New York, 1997
[11] A model-data weak formulation for estimation of state and model bias; application to acoustics, Math. Model. Numer. Anal. (2013) (in preparation)
Cited by Sources:
Comments - Policy