Comptes Rendus
Numerical analysis
A model-data weak formulation for simultaneous estimation of state and model bias
[Estimation de la variable dʼétat et du biais de modèle par une formulation faible incorporant les données]
Comptes Rendus. Mathématique, Volume 351 (2013) no. 23-24, pp. 937-941.

We introduce a Petrov–Galerkin regularized saddle approximation which incorporates a “model” (partial differential equation) and “data” (M experimental observations) to yield estimates for both state and model bias. We provide an a priori theory that identifies two distinct contributions to the reduction in the error in state as a function of the number of observations, M: the stability constant increases with M; the model-bias best-fit error decreases with M. We present results for a synthetic Helmholtz problem and an actual acoustics system.

Nous présentons une approximation de Petrov–Galerkin pour un problème de point selle incorporant un « modèle » (équation aux dérivées partielles) et des « données » (M observations expérimentales) afin dʼobtenir une estimation conjointe de la variable dʼétat et du biais de modèle. Notre théorie a priori identifie deux contributions à la décroissance de lʼerreur sur lʼétat en fonction du nombre dʼobservations expérimentales, M : la croissance de la constante stabilité avec M ; la décroissance de lʼestimation par moindre carré du biais de modèle avec M. Nous présentons des résultats pour un problème de Helmholtz synthétique ainsi que pour un système acoustique réel.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2013.10.034

Masayuki Yano 1 ; James D. Penn 1 ; Anthony T. Patera 1

1 Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
@article{CRMATH_2013__351_23-24_937_0,
     author = {Masayuki Yano and James D. Penn and Anthony T. Patera},
     title = {A model-data weak formulation for simultaneous estimation of state and model bias},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {937--941},
     publisher = {Elsevier},
     volume = {351},
     number = {23-24},
     year = {2013},
     doi = {10.1016/j.crma.2013.10.034},
     language = {en},
}
TY  - JOUR
AU  - Masayuki Yano
AU  - James D. Penn
AU  - Anthony T. Patera
TI  - A model-data weak formulation for simultaneous estimation of state and model bias
JO  - Comptes Rendus. Mathématique
PY  - 2013
SP  - 937
EP  - 941
VL  - 351
IS  - 23-24
PB  - Elsevier
DO  - 10.1016/j.crma.2013.10.034
LA  - en
ID  - CRMATH_2013__351_23-24_937_0
ER  - 
%0 Journal Article
%A Masayuki Yano
%A James D. Penn
%A Anthony T. Patera
%T A model-data weak formulation for simultaneous estimation of state and model bias
%J Comptes Rendus. Mathématique
%D 2013
%P 937-941
%V 351
%N 23-24
%I Elsevier
%R 10.1016/j.crma.2013.10.034
%G en
%F CRMATH_2013__351_23-24_937_0
Masayuki Yano; James D. Penn; Anthony T. Patera. A model-data weak formulation for simultaneous estimation of state and model bias. Comptes Rendus. Mathématique, Volume 351 (2013) no. 23-24, pp. 937-941. doi : 10.1016/j.crma.2013.10.034. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.10.034/

[1] J. Antoni A Bayesian approach to sound source reconstruction: optimal basis, regularization, and focusing, J. Acoust. Soc. Amer., Volume 131 (2012), pp. 2873-2890

[2] W. Dahmen; C. Plesken; G. Welper Double greedy algorithms: reduced basis methods for transport dominated problems, Math. Model. Numer. Anal. (2013) (in press) | DOI

[3] L.F. Demkowicz; J. Gopalakrishnan A class of discontinuous Petrov–Galerkin methods. Part I: The transport equation, Comput. Methods Appl. Mech. Eng., Volume 23–24 (2010), pp. 1558-1572

[4] G. Franceschini; S. Macchietto Model-based design of experiments for parameter precision: state of the art, Chem. Eng. Sci., Volume 63 (2008), pp. 4846-4872

[5] R.E. Kalman A new approach to linear filtering and prediction problems, Trans. ASME – J. Basic Eng., Ser. D, Volume 82 (1960), pp. 35-45

[6] Z.L. Li; I.M. Navon Optimality of variational data assimilation and its relationship with the Kalman filter and smoother, Q. J. Roy. Meteor. Soc., Volume 127 (2001), pp. 661-683

[7] A.C. Lorenc A global three-dimensional multivariate statistical interpolation scheme, Mon. Weather Rev., Volume 109 (1981), pp. 701-721

[8] Y. Maday; N.C. Nguyen; A.T. Patera; G.S.H. Pau A general multipurpose interpolation procedure: the magic points, Commun. Pure Appl. Math., Volume 8 (2009) no. 1, pp. 383-404

[9] A.T. Patera; E.M. Rønquist Regression on parametric manifolds: estimation of spatial field, functional outputs, and parameters from noisy data, C. R. Acad. Sci. Paris, Ser. I, Volume 350 (2012), pp. 543-547

[10] A. Quarteroni; A. Valli Numerical Approximation of Partial Differential Equations, Springer, New York, 1997

[11] M. Yano; J.D. Penn; A.T. Patera A model-data weak formulation for estimation of state and model bias; application to acoustics, Math. Model. Numer. Anal. (2013) (in preparation)

  • Nicole Aretz; Peng Chen; Denise Degen; Karen Veroy A greedy sensor selection algorithm for hyperparameterized linear Bayesian inverse problems with correlated noise models, Journal of Computational Physics, Volume 498 (2024), p. 24 (Id/No 112599) | DOI:10.1016/j.jcp.2023.112599 | Zbl:7797623
  • Nicole Aretz-Nellesen; Martin A. Grepl; Karen Veroy 3D-VAR for parameterized partial differential equations: a certified reduced basis approach, Advances in Computational Mathematics, Volume 45 (2019) no. 5-6, pp. 2369-2400 | DOI:10.1007/s10444-019-09713-w | Zbl:1434.49019
  • Renee Swischuk; Laura Mainini; Benjamin Peherstorfer; Karen Willcox Projection-based model reduction: formulations for physics-based machine learning, Computers and Fluids, Volume 179 (2019), pp. 704-717 | DOI:10.1016/j.compfluid.2018.07.021 | Zbl:1411.65061
  • Benjamin Peherstorfer; Serkan Gugercin; Karen Willcox Data-driven reduced model construction with time-domain Loewner models, SIAM Journal on Scientific Computing, Volume 39 (2017) no. 5, p. a2152-a2178 | DOI:10.1137/16m1094750 | Zbl:1448.65087
  • N. C. Nguyen; H. Men; R. M. Freund; J. Peraire Functional regression for state prediction using linear PDE models and observations, SIAM Journal on Scientific Computing, Volume 38 (2016) no. 2, p. b247-b271 | DOI:10.1137/14100275x | Zbl:1350.60038
  • Y. Maday; O. Mula; A. T. Patera; M. Yano The generalized empirical interpolation method: stability theory on Hilbert spaces with an application to the Stokes equation, Computer Methods in Applied Mechanics and Engineering, Volume 287 (2015), pp. 310-334 | DOI:10.1016/j.cma.2015.01.018 | Zbl:1423.76346
  • N. C. Nguyen; J. Peraire Gaussian functional regression for linear partial differential equations, Computer Methods in Applied Mechanics and Engineering, Volume 287 (2015), pp. 69-89 | DOI:10.1016/j.cma.2015.01.008 | Zbl:1423.35362
  • Benjamin Peherstorfer; Karen Willcox Dynamic data-driven reduced-order models, Computer Methods in Applied Mechanics and Engineering, Volume 291 (2015), pp. 21-41 | DOI:10.1016/j.cma.2015.03.018 | Zbl:1425.65205
  • Yvon Maday; Anthony T. Patera; James D. Penn; Masayuki Yano A parameterized-background data-weak approach to variational data assimilation: formulation, analysis, and application to acoustics, International Journal for Numerical Methods in Engineering, Volume 102 (2015) no. 5, pp. 933-965 | DOI:10.1002/nme.4747 | Zbl:1352.65529

Cité par 9 documents. Sources : zbMATH

Commentaires - Politique