Comptes Rendus
Algebraic geometry
Generators of the cohomology algebra of the complement to a rational algebraic curve in the weighted projective plane Pω2
Comptes Rendus. Mathématique, Volume 352 (2014) no. 1, pp. 65-70.

The main goal of this work is the study of the cohomology ring of Pω2R, being R a reduced algebraic curve in the complex weighted projective plane Pω2 whose irreducible components are all rational (possibly singular) curves. In particular, holomorphic (rational) representatives are found for the cohomology classes.

Le but principal de ce travail est lʼétude de lʼanneau de cohomologie de Pω2R, R étant une courbe algébrique réduite dans le plan projectif pondéré complexe Pω2, dont les composantes irréductibles sont des courbes rationnelles (avec ou sans points singuliers). En particulier, des représentants holomorphes (rationnels) sont obtenus pour les classes de cohomologie.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2013.11.006

Jorge Ortigas-Galindo 1

1 Centro Universitario de la Defensa-IUMA, Academia General Militar, Ctra. de Huesca s/n., 50090 Zaragoza, Spain
@article{CRMATH_2014__352_1_65_0,
     author = {Jorge Ortigas-Galindo},
     title = {Generators of the cohomology algebra of the complement to a rational algebraic curve in the weighted projective plane $ {\mathbb{P}}_{\omega }^{2}$},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {65--70},
     publisher = {Elsevier},
     volume = {352},
     number = {1},
     year = {2014},
     doi = {10.1016/j.crma.2013.11.006},
     language = {en},
}
TY  - JOUR
AU  - Jorge Ortigas-Galindo
TI  - Generators of the cohomology algebra of the complement to a rational algebraic curve in the weighted projective plane $ {\mathbb{P}}_{\omega }^{2}$
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 65
EP  - 70
VL  - 352
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crma.2013.11.006
LA  - en
ID  - CRMATH_2014__352_1_65_0
ER  - 
%0 Journal Article
%A Jorge Ortigas-Galindo
%T Generators of the cohomology algebra of the complement to a rational algebraic curve in the weighted projective plane $ {\mathbb{P}}_{\omega }^{2}$
%J Comptes Rendus. Mathématique
%D 2014
%P 65-70
%V 352
%N 1
%I Elsevier
%R 10.1016/j.crma.2013.11.006
%G en
%F CRMATH_2014__352_1_65_0
Jorge Ortigas-Galindo. Generators of the cohomology algebra of the complement to a rational algebraic curve in the weighted projective plane $ {\mathbb{P}}_{\omega }^{2}$. Comptes Rendus. Mathématique, Volume 352 (2014) no. 1, pp. 65-70. doi : 10.1016/j.crma.2013.11.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.11.006/

[1] E. Brieskorn Sur les groupes de tresses [dʼaprès V.I. Arnolʼd], Séminaire Bourbaki, 24e$ {24}^{e}$ année (1971/1972), Lect. Notes Math., vol. 317, Springer, Berlin, 1973 (Exp. No. 401, pp. 21–44)

[2] J.I. Cogolludo-Agustín Topological Invariants of the Complement to Arrangements of Rational Plane Curves, Mem. Amer. Math. Soc., vol. 159 (756), American Mathematical Society, 2002 (xiv+75 p)

[3] J.I. Cogolludo-Agustín; J. Martín-Morales; J. Ortigas-Galindo Local invariants on quotient singularities and a genus formula for weighted plane curves, Int. Math. Res. Not. IMRN (2013) (in press) | DOI

[4] J.I. Cogolludo Agustín; D. Matei Cohomology algebra of plane curves, weak combinatorial type, and formality, Trans. Amer. Math. Soc., Volume 364 (2012) no. 11, pp. 5765-5790

[5] J. Martín-Morales Embedded Q-resolutions and Yomdin–Lê surface singularities, 2011 http://zaguan.unizar.es/record/6870 (PhD thesis)

[6] P. Orlik; L. Solomon Combinatorics and topology of complements of hyperplanes, Invent. Math., Volume 56 (1980) no. 2, pp. 167-189

[7] J. Ortigas-Galindo Algebraic and topological invariants of curves and surfaces with quotient singularities, 2013 http://www.theses.fr/2013PAUU3011 (PhD thesis)

[8] J.H.M. Steenbrink Mixed Hodge structure on the vanishing cohomology, Real and Complex Singularities (Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976), Sijthoff and Noordhoff, Alphen aan den Rijn, 1977, pp. 525-563

Cited by Sources:

Comments - Policy