The main goal of this work is the study of the cohomology ring of , being a reduced algebraic curve in the complex weighted projective plane whose irreducible components are all rational (possibly singular) curves. In particular, holomorphic (rational) representatives are found for the cohomology classes.
Le but principal de ce travail est lʼétude de lʼanneau de cohomologie de , étant une courbe algébrique réduite dans le plan projectif pondéré complexe , dont les composantes irréductibles sont des courbes rationnelles (avec ou sans points singuliers). En particulier, des représentants holomorphes (rationnels) sont obtenus pour les classes de cohomologie.
Accepted:
Published online:
Jorge Ortigas-Galindo 1
@article{CRMATH_2014__352_1_65_0, author = {Jorge Ortigas-Galindo}, title = {Generators of the cohomology algebra of the complement to a rational algebraic curve in the weighted projective plane $ {\mathbb{P}}_{\omega }^{2}$}, journal = {Comptes Rendus. Math\'ematique}, pages = {65--70}, publisher = {Elsevier}, volume = {352}, number = {1}, year = {2014}, doi = {10.1016/j.crma.2013.11.006}, language = {en}, }
TY - JOUR AU - Jorge Ortigas-Galindo TI - Generators of the cohomology algebra of the complement to a rational algebraic curve in the weighted projective plane $ {\mathbb{P}}_{\omega }^{2}$ JO - Comptes Rendus. Mathématique PY - 2014 SP - 65 EP - 70 VL - 352 IS - 1 PB - Elsevier DO - 10.1016/j.crma.2013.11.006 LA - en ID - CRMATH_2014__352_1_65_0 ER -
%0 Journal Article %A Jorge Ortigas-Galindo %T Generators of the cohomology algebra of the complement to a rational algebraic curve in the weighted projective plane $ {\mathbb{P}}_{\omega }^{2}$ %J Comptes Rendus. Mathématique %D 2014 %P 65-70 %V 352 %N 1 %I Elsevier %R 10.1016/j.crma.2013.11.006 %G en %F CRMATH_2014__352_1_65_0
Jorge Ortigas-Galindo. Generators of the cohomology algebra of the complement to a rational algebraic curve in the weighted projective plane $ {\mathbb{P}}_{\omega }^{2}$. Comptes Rendus. Mathématique, Volume 352 (2014) no. 1, pp. 65-70. doi : 10.1016/j.crma.2013.11.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.11.006/
[1] Sur les groupes de tresses [dʼaprès V.I. Arnolʼd], Séminaire Bourbaki, 24e$ {24}^{e}$ année (1971/1972), Lect. Notes Math., vol. 317, Springer, Berlin, 1973 (Exp. No. 401, pp. 21–44)
[2] Topological Invariants of the Complement to Arrangements of Rational Plane Curves, Mem. Amer. Math. Soc., vol. 159 (756), American Mathematical Society, 2002 (xiv+75 p)
[3] Local invariants on quotient singularities and a genus formula for weighted plane curves, Int. Math. Res. Not. IMRN (2013) (in press) | DOI
[4] Cohomology algebra of plane curves, weak combinatorial type, and formality, Trans. Amer. Math. Soc., Volume 364 (2012) no. 11, pp. 5765-5790
[5] Embedded Q-resolutions and Yomdin–Lê surface singularities, 2011 http://zaguan.unizar.es/record/6870 (PhD thesis)
[6] Combinatorics and topology of complements of hyperplanes, Invent. Math., Volume 56 (1980) no. 2, pp. 167-189
[7] Algebraic and topological invariants of curves and surfaces with quotient singularities, 2013 http://www.theses.fr/2013PAUU3011 (PhD thesis)
[8] Mixed Hodge structure on the vanishing cohomology, Real and Complex Singularities (Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976), Sijthoff and Noordhoff, Alphen aan den Rijn, 1977, pp. 525-563
Cited by Sources:
Comments - Policy