Comptes Rendus
Differential geometry
Isometry group of Sasaki–Einstein metric
Comptes Rendus. Mathématique, Volume 352 (2014) no. 1, pp. 71-73.

In this short paper we prove a conjecture of Martelli–Sparks–Yau regarding the isometry group of a Sasaki–Einstein metric.

Soit (M,g) une variété de Sasaki–Einstein et (X,J) la variété affine sous-jacente à son cône de Kähler. Nous montrons que la composante neutre du sous-groupe compact maximal du groupe des automorphismes de (X,J) coïncide avec la composante neutre du groupe des isométries holomorphes de (M,g).

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2013.10.037

Weiyong He 1

1 Department of Mathematics, University of Oregon, Eugene, OR 97403, USA
@article{CRMATH_2014__352_1_71_0,
     author = {Weiyong He},
     title = {Isometry group of {Sasaki{\textendash}Einstein} metric},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {71--73},
     publisher = {Elsevier},
     volume = {352},
     number = {1},
     year = {2014},
     doi = {10.1016/j.crma.2013.10.037},
     language = {en},
}
TY  - JOUR
AU  - Weiyong He
TI  - Isometry group of Sasaki–Einstein metric
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 71
EP  - 73
VL  - 352
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crma.2013.10.037
LA  - en
ID  - CRMATH_2014__352_1_71_0
ER  - 
%0 Journal Article
%A Weiyong He
%T Isometry group of Sasaki–Einstein metric
%J Comptes Rendus. Mathématique
%D 2014
%P 71-73
%V 352
%N 1
%I Elsevier
%R 10.1016/j.crma.2013.10.037
%G en
%F CRMATH_2014__352_1_71_0
Weiyong He. Isometry group of Sasaki–Einstein metric. Comptes Rendus. Mathématique, Volume 352 (2014) no. 1, pp. 71-73. doi : 10.1016/j.crma.2013.10.037. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.10.037/

[1] S. Bando; T. Mabuchi Uniqueness of Einstein–Kähler metrics modulo connected group actions, Sendai, 1985 (Adv. Stud. Pure Math.), Volume vol. 10, North-Holland, Amsterdam (1987), pp. 11-40

[2] B. Berndtsson A Brunn–Minkowski-type inequality for Fano manifolds and the Bando–Mabuchi uniqueness theorem | arXiv

[3] C. Boyer; K. Galicki Sasakian Geometry, Oxford Mathematical Monographs, Oxford University Press, USA, 2008 (614 p)

[4] E. Calabi Extremal Kähler metrics. II, Differential Geometry and Complex Analysis, Springer, Berlin, 1985, pp. 95-114

[5] A. Futaki; H. Ono; G.-F. Wang Transverse Kähler geometry of Sasaki manifolds and toric Sasaki–Einstein manifolds, J. Differ. Geom., Volume 83 (2009), pp. 585-636

[6] K. Grove; H. Karcher; E. Ruh Group actions and curvature, Invent. Math., Volume 23 (1974), pp. 31-48

[7] W.-Y. He; S. Sun Frankel conjecture and Sasaki geometry | arXiv

[8] D. Martelli; J. Sparks; S.-T. Yau Sasaki–Einstein Manifolds and Volume Minimisation, Commun. Math. Phys., Volume 280 (2007), pp. 611-673

[9] Y. Matsushima Sur la structure du groupe dʼhomeomorphismes analytiques dʼune certaine variete kehlerienne, Nagoya Math. J., Volume 11 (1957), pp. 145-150 (in French)

[10] P. Rukimbira Chern–Hamiltonʼs conjecture and K-contactness, Houst. J. Math., Volume 21 (1995) no. 4, pp. 709-718

[11] G. Tian; X.-H. Zhu Uniqueness of Kähler–Ricci solitons, Acta Math., Volume 184 (2000) no. 2, pp. 271-305

Cited by Sources:

Comments - Policy