Using the Faber polynomials, we obtain coefficient expansions for analytic bi-close-to-convex functions and determine coefficient estimates for such functions. We also demonstrate the unpredictable behavior of the early coefficients of subclasses of bi-univalent functions. A function is said to be bi-univalent in a domain if both the function and its inverse map are univalent there.
Nous exprimons les coefficients des développements de fonctions analytiques bi-presque convexes en utilisant les polynômes de Faber, et nous en déduisons des estimations de ces coefficients. Une fonction est dite bi-univalente dans un domaine si elle et son inverse sont univalentes dans ce domaine. Nous montrons également le comportement imprévisible des premiers coefficients pour des sous-classes de fonctions bi-univalentes.
Accepted:
Published online:
Samaneh G. Hamidi 1; Jay M. Jahangiri 2
@article{CRMATH_2014__352_1_17_0, author = {Samaneh G. Hamidi and Jay M. Jahangiri}, title = {Faber polynomial coefficient estimates for analytic bi-close-to-convex functions}, journal = {Comptes Rendus. Math\'ematique}, pages = {17--20}, publisher = {Elsevier}, volume = {352}, number = {1}, year = {2014}, doi = {10.1016/j.crma.2013.11.005}, language = {en}, }
TY - JOUR AU - Samaneh G. Hamidi AU - Jay M. Jahangiri TI - Faber polynomial coefficient estimates for analytic bi-close-to-convex functions JO - Comptes Rendus. Mathématique PY - 2014 SP - 17 EP - 20 VL - 352 IS - 1 PB - Elsevier DO - 10.1016/j.crma.2013.11.005 LA - en ID - CRMATH_2014__352_1_17_0 ER -
Samaneh G. Hamidi; Jay M. Jahangiri. Faber polynomial coefficient estimates for analytic bi-close-to-convex functions. Comptes Rendus. Mathématique, Volume 352 (2014) no. 1, pp. 17-20. doi : 10.1016/j.crma.2013.11.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.11.005/
[1] Symmetric sums associated to the factorization of Grunsky coefficients, Montréal, Canada (27–29 April 2007)
[2] Remarks on Faber polynomials, Int. Math. Forum, Volume 3 (2008) no. 9–12, pp. 449-456 MR2386197 (2009a:30037)
[3] Differential calculus on the Faber polynomials, Bull. Sci. Math., Volume 130 (2006) no. 3, pp. 179-222 MR2215663 (2007e:30002)
[4] An algebra of differential operators and generating functions on the set of univalent functions, Bull. Sci. Math., Volume 126 (2002) no. 5, pp. 343-367 MR1914725 (2004c:17048)
[5] Aspects of Contemporary Complex Analysis, Academic Press, London and New York, 1980 MR0623462 (82f:30001)
[6] On some classes of bi-univalent functions, Stud. Univ. Babeş–Bolyai, Math., Volume 31 (1986) no. 2, pp. 70-77 MR0911858 (88k:30012)
[7] A proof of the Bieberbach conjecture, Acta Math., Volume 154 (1985) no. 1–2, pp. 137-152
[8] Univalent Functions, Grundlehren der Mathematischen Wissenschaften, vol. 259, Springer, New York, 1983 MR0708494 (85j:30034)
[9] Über polynomische Entwickelungen, Math. Ann., Volume 57 (1903) no. 3, pp. 389-408 (MR1511216)
[10] Faber polynomial coefficient estimates for meromorphic bi-starlike functions, Int. J. Math. Math. Sci. (2013), pp. 1-4 (Art. ID 498159)
[11] Coefficient estimates for a class of meromorphic bi-univalent functions, C. R. Acad. Sci. Paris, Ser. I, Volume 351 (2013), pp. 349-352
[12] Close-to-convex schlicht functions, Mich. Math. J., Volume 1 (1952), pp. 169-185
[13] On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., Volume 18 (1967), pp. 63-68 MR0206255 (34 #6074)
[14] The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in , Arch. Ration. Mech. Anal., Volume 32 (1969), pp. 100-112
[15] Topics in univalent function theory, University of London, 1981 (Ph.D. thesis)
[16] On the Faber polynomials of the univalent functions of class Σ, J. Math. Anal. Appl., Volume 162 (1991) no. 1, pp. 268-276 MR1135277 (93d:30023)
Cited by Sources:
Comments - Policy