Comptes Rendus
Complex analysis
Faber polynomial coefficient estimates for analytic bi-close-to-convex functions
Comptes Rendus. Mathématique, Volume 352 (2014) no. 1, pp. 17-20.

Using the Faber polynomials, we obtain coefficient expansions for analytic bi-close-to-convex functions and determine coefficient estimates for such functions. We also demonstrate the unpredictable behavior of the early coefficients of subclasses of bi-univalent functions. A function is said to be bi-univalent in a domain if both the function and its inverse map are univalent there.

Nous exprimons les coefficients des développements de fonctions analytiques bi-presque convexes en utilisant les polynômes de Faber, et nous en déduisons des estimations de ces coefficients. Une fonction est dite bi-univalente dans un domaine si elle et son inverse sont univalentes dans ce domaine. Nous montrons également le comportement imprévisible des premiers coefficients pour des sous-classes de fonctions bi-univalentes.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2013.11.005

Samaneh G. Hamidi 1; Jay M. Jahangiri 2

1 Institute of Mathematical Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
2 Department of Mathematical Sciences, Kent State University, Burton, OH 44021-9500, USA
@article{CRMATH_2014__352_1_17_0,
     author = {Samaneh G. Hamidi and Jay M. Jahangiri},
     title = {Faber polynomial coefficient estimates for analytic bi-close-to-convex functions},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {17--20},
     publisher = {Elsevier},
     volume = {352},
     number = {1},
     year = {2014},
     doi = {10.1016/j.crma.2013.11.005},
     language = {en},
}
TY  - JOUR
AU  - Samaneh G. Hamidi
AU  - Jay M. Jahangiri
TI  - Faber polynomial coefficient estimates for analytic bi-close-to-convex functions
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 17
EP  - 20
VL  - 352
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crma.2013.11.005
LA  - en
ID  - CRMATH_2014__352_1_17_0
ER  - 
%0 Journal Article
%A Samaneh G. Hamidi
%A Jay M. Jahangiri
%T Faber polynomial coefficient estimates for analytic bi-close-to-convex functions
%J Comptes Rendus. Mathématique
%D 2014
%P 17-20
%V 352
%N 1
%I Elsevier
%R 10.1016/j.crma.2013.11.005
%G en
%F CRMATH_2014__352_1_17_0
Samaneh G. Hamidi; Jay M. Jahangiri. Faber polynomial coefficient estimates for analytic bi-close-to-convex functions. Comptes Rendus. Mathématique, Volume 352 (2014) no. 1, pp. 17-20. doi : 10.1016/j.crma.2013.11.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.11.005/

[1] H. Airault Symmetric sums associated to the factorization of Grunsky coefficients, Montréal, Canada (27–29 April 2007)

[2] H. Airault Remarks on Faber polynomials, Int. Math. Forum, Volume 3 (2008) no. 9–12, pp. 449-456 MR2386197 (2009a:30037)

[3] H. Airault; A. Bouali Differential calculus on the Faber polynomials, Bull. Sci. Math., Volume 130 (2006) no. 3, pp. 179-222 MR2215663 (2007e:30002)

[4] H. Airault; J. Ren An algebra of differential operators and generating functions on the set of univalent functions, Bull. Sci. Math., Volume 126 (2002) no. 5, pp. 343-367 MR1914725 (2004c:17048)

[5] D.A. Brannan; J.G. Clunie Aspects of Contemporary Complex Analysis, Academic Press, London and New York, 1980 MR0623462 (82f:30001)

[6] D.A. Brannan; T.S. Taha On some classes of bi-univalent functions, Stud. Univ. Babeş–Bolyai, Math., Volume 31 (1986) no. 2, pp. 70-77 MR0911858 (88k:30012)

[7] L. de Branges A proof of the Bieberbach conjecture, Acta Math., Volume 154 (1985) no. 1–2, pp. 137-152

[8] P.L. Duren Univalent Functions, Grundlehren der Mathematischen Wissenschaften, vol. 259, Springer, New York, 1983 MR0708494 (85j:30034)

[9] G. Faber Über polynomische Entwickelungen, Math. Ann., Volume 57 (1903) no. 3, pp. 389-408 (MR1511216)

[10] S.G. Hamidi; S.A. Halim; J.M. Jahangiri Faber polynomial coefficient estimates for meromorphic bi-starlike functions, Int. J. Math. Math. Sci. (2013), pp. 1-4 (Art. ID 498159)

[11] S.G. Hamidi; S.A. Halim; J.M. Jahangiri Coefficient estimates for a class of meromorphic bi-univalent functions, C. R. Acad. Sci. Paris, Ser. I, Volume 351 (2013), pp. 349-352

[12] W. Kaplan Close-to-convex schlicht functions, Mich. Math. J., Volume 1 (1952), pp. 169-185

[13] M. Lewin On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., Volume 18 (1967), pp. 63-68 MR0206255 (34 #6074)

[14] E. Netanyahu The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in |z|<1, Arch. Ration. Mech. Anal., Volume 32 (1969), pp. 100-112

[15] T.S. Taha Topics in univalent function theory, University of London, 1981 (Ph.D. thesis)

[16] P.G. Todorov On the Faber polynomials of the univalent functions of class Σ, J. Math. Anal. Appl., Volume 162 (1991) no. 1, pp. 268-276 MR1135277 (93d:30023)

Cited by Sources:

Comments - Policy