[Estimation des coefficients des fonctions analytiques bi-presque convexes à lʼaide des polynômes de Faber]
Nous exprimons les coefficients des développements de fonctions analytiques bi-presque convexes en utilisant les polynômes de Faber, et nous en déduisons des estimations de ces coefficients. Une fonction est dite bi-univalente dans un domaine si elle et son inverse sont univalentes dans ce domaine. Nous montrons également le comportement imprévisible des premiers coefficients pour des sous-classes de fonctions bi-univalentes.
Using the Faber polynomials, we obtain coefficient expansions for analytic bi-close-to-convex functions and determine coefficient estimates for such functions. We also demonstrate the unpredictable behavior of the early coefficients of subclasses of bi-univalent functions. A function is said to be bi-univalent in a domain if both the function and its inverse map are univalent there.
Accepté le :
Publié le :
Samaneh G. Hamidi 1 ; Jay M. Jahangiri 2
@article{CRMATH_2014__352_1_17_0, author = {Samaneh G. Hamidi and Jay M. Jahangiri}, title = {Faber polynomial coefficient estimates for analytic bi-close-to-convex functions}, journal = {Comptes Rendus. Math\'ematique}, pages = {17--20}, publisher = {Elsevier}, volume = {352}, number = {1}, year = {2014}, doi = {10.1016/j.crma.2013.11.005}, language = {en}, }
TY - JOUR AU - Samaneh G. Hamidi AU - Jay M. Jahangiri TI - Faber polynomial coefficient estimates for analytic bi-close-to-convex functions JO - Comptes Rendus. Mathématique PY - 2014 SP - 17 EP - 20 VL - 352 IS - 1 PB - Elsevier DO - 10.1016/j.crma.2013.11.005 LA - en ID - CRMATH_2014__352_1_17_0 ER -
Samaneh G. Hamidi; Jay M. Jahangiri. Faber polynomial coefficient estimates for analytic bi-close-to-convex functions. Comptes Rendus. Mathématique, Volume 352 (2014) no. 1, pp. 17-20. doi : 10.1016/j.crma.2013.11.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.11.005/
[1] Symmetric sums associated to the factorization of Grunsky coefficients, Montréal, Canada (27–29 April 2007)
[2] Remarks on Faber polynomials, Int. Math. Forum, Volume 3 (2008) no. 9–12, pp. 449-456 MR2386197 (2009a:30037)
[3] Differential calculus on the Faber polynomials, Bull. Sci. Math., Volume 130 (2006) no. 3, pp. 179-222 MR2215663 (2007e:30002)
[4] An algebra of differential operators and generating functions on the set of univalent functions, Bull. Sci. Math., Volume 126 (2002) no. 5, pp. 343-367 MR1914725 (2004c:17048)
[5] Aspects of Contemporary Complex Analysis, Academic Press, London and New York, 1980 MR0623462 (82f:30001)
[6] On some classes of bi-univalent functions, Stud. Univ. Babeş–Bolyai, Math., Volume 31 (1986) no. 2, pp. 70-77 MR0911858 (88k:30012)
[7] A proof of the Bieberbach conjecture, Acta Math., Volume 154 (1985) no. 1–2, pp. 137-152
[8] Univalent Functions, Grundlehren der Mathematischen Wissenschaften, vol. 259, Springer, New York, 1983 MR0708494 (85j:30034)
[9] Über polynomische Entwickelungen, Math. Ann., Volume 57 (1903) no. 3, pp. 389-408 (MR1511216)
[10] Faber polynomial coefficient estimates for meromorphic bi-starlike functions, Int. J. Math. Math. Sci. (2013), pp. 1-4 (Art. ID 498159)
[11] Coefficient estimates for a class of meromorphic bi-univalent functions, C. R. Acad. Sci. Paris, Ser. I, Volume 351 (2013), pp. 349-352
[12] Close-to-convex schlicht functions, Mich. Math. J., Volume 1 (1952), pp. 169-185
[13] On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., Volume 18 (1967), pp. 63-68 MR0206255 (34 #6074)
[14] The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in
[15] Topics in univalent function theory, University of London, 1981 (Ph.D. thesis)
[16] On the Faber polynomials of the univalent functions of class Σ, J. Math. Anal. Appl., Volume 162 (1991) no. 1, pp. 268-276 MR1135277 (93d:30023)
- , 3RD INTERNATIONAL CONFERENCE ON MATHEMATICS, AI, INFORMATION AND COMMUNICATION TECHNOLOGIES: ICMAICT2023, Volume 3264 (2025), p. 050130 | DOI:10.1063/5.0258429
- Second Hankel Determinant Bound Application to Certain Family of Bi-Univalent Functions, Axioms, Volume 13 (2024) no. 12, p. 819 | DOI:10.3390/axioms13120819
- Coefficient Estimates for New Subclasses of Bi-Univalent Functions with Bounded Boundary Rotation by Using Faber Polynomial Technique, Axioms, Volume 13 (2024) no. 8, p. 509 | DOI:10.3390/axioms13080509
- Faber polynomial coefficient inequalities for bi-Bazilevič functions associated with the Fibonacci-number series and the square-root functions, Journal of Inequalities and Applications, Volume 2024 (2024) no. 1 | DOI:10.1186/s13660-024-03090-9
- Some m-fold symmetric bi-univalent function classes and their associated Taylor-Maclaurin coefficient bounds, Journal of Inequalities and Applications, Volume 2024 (2024) no. 1 | DOI:10.1186/s13660-024-03114-4
- Estimating the Second Order Hankel Determinant for the Subclass of Bi-Close-to-Convex Function of Complex Order, Malaysian Journal of Mathematical Sciences, Volume 18 (2024) no. 1, p. 91 | DOI:10.47836/mjms.18.1.06
- Fractional Differential Operator Based on Quantum Calculus and Bi-Close-to-Convex Functions, Mathematics, Volume 12 (2024) no. 13, p. 2026 | DOI:10.3390/math12132026
- On a New Subclass of Bi-Univalent Analytic Functions Characterized by
-Lucas Polynomial Coefficients via Sălăgean Differential Operator, Operators, Inequalities and Approximation (2024), p. 159 | DOI:10.1007/978-981-97-3238-8_8 - Characterization of Bi-Starlike Functions: A Daehee Polynomial Approach, Symmetry, Volume 16 (2024) no. 12, p. 1640 | DOI:10.3390/sym16121640
- Certain new applications of Faber polynomial expansion for some new subclasses of
-fold symmetric bi-univalent functions associated with -calculus, AIMS Mathematics, Volume 8 (2023) no. 5, p. 10283 | DOI:10.3934/math.2023521 - A New Subclass of Bi-Univalent Functions Defined by a Certain Integral Operator, Axioms, Volume 12 (2023) no. 2, p. 172 | DOI:10.3390/axioms12020172
- Faber Polynomial Coefficient Estimates for Bi-Close-to-Convex Functions Defined by the q-Fractional Derivative, Axioms, Volume 12 (2023) no. 6, p. 585 | DOI:10.3390/axioms12060585
- New Applications of Faber Polynomials and q-Fractional Calculus for a New Subclass of m-Fold Symmetric bi-Close-to-Convex Functions, Axioms, Volume 12 (2023) no. 6, p. 600 | DOI:10.3390/axioms12060600
- Faber Polynomial Coefficient Inequalities for a Subclass of Bi-Close-To-Convex Functions Associated with Fractional Differential Operator, Fractal and Fractional, Volume 7 (2023) no. 12, p. 883 | DOI:10.3390/fractalfract7120883
- Some New Applications of the Faber Polynomial Expansion Method for Generalized Bi-Subordinate Functions of Complex Order γ Defined by q-Calculus, Fractal and Fractional, Volume 7 (2023) no. 3, p. 270 | DOI:10.3390/fractalfract7030270
- New Applications of Faber Polynomial Expansion for Analytical Bi-Close-to-Convex Functions Defined by Using q-Calculus, Mathematics, Volume 11 (2023) no. 5, p. 1217 | DOI:10.3390/math11051217
- Faber Polynomial Coefficient Estimates for Janowski Type bi-Close-to-Convex and bi-Quasi-Convex Functions, Symmetry, Volume 15 (2023) no. 3, p. 604 | DOI:10.3390/sym15030604
- Certain New Applications of Faber Polynomial Expansion for a New Class of bi-Univalent Functions Associated with Symmetric q-Calculus, Symmetry, Volume 15 (2023) no. 7, p. 1407 | DOI:10.3390/sym15071407
- Faber polynomial coefficients estimates for certain subclasses of
-Mittag-Leffler-Type analytic and bi-univalent functions, AIMS Mathematics, Volume 7 (2022) no. 2, p. 2512 | DOI:10.3934/math.2022141 - Certain class of bi-univalent functions defined by quantum calculus operator associated with Faber polynomial, AIMS Mathematics, Volume 7 (2022) no. 2, p. 2989 | DOI:10.3934/math.2022165
- Applications of q-Symmetric Derivative Operator to the Subclass of Analytic and Bi-Univalent Functions Involving the Faber Polynomial Coefficients, Mathematical Problems in Engineering, Volume 2022 (2022), p. 1 | DOI:10.1155/2022/4250878
- Coefficients bounds for a subclass of bi-univalent functions defined by Al-Oboudi differential operator, Thermal Science, Volume 26 (2022) no. Spec. issue 2, p. 583 | DOI:10.2298/tsci22s2583u
- Coefficient estimates for Libera type bi-close-to-convex functions, Mathematica Slovaca, Volume 71 (2021) no. 6, p. 1401 | DOI:10.1515/ms-2021-0060
- Faber Polynomial Coefficient Estimates for Bi-Univalent Functions Defined by Using Differential Subordination and a Certain Fractional Derivative Operator, Mathematics, Volume 8 (2020) no. 2, p. 172 | DOI:10.3390/math8020172
- , Volume 2096 (2019), p. 020024 | DOI:10.1063/1.5097821
- , Volume 2096 (2019), p. 030023 | DOI:10.1063/1.5097534
- Simple criteria for univalence and coefficient bounds for a certain subclass of analytic functions, Communications Faculty Of Science University of Ankara Series A1Mathematics and Statistics (2019), p. 394 | DOI:10.31801/cfsuasmas.596546
- Estimation of initial Maclaurin coefficients of certain subclasses of bounded bi-univalent functions, Journal of the Egyptian Mathematical Society, Volume 27 (2019) no. 1 | DOI:10.1186/s42787-019-0015-z
- The Second Hankel Determinant Problem for a Class of Bi-Close-to-Convex Functions, Mathematics, Volume 7 (2019) no. 10, p. 986 | DOI:10.3390/math7100986
- , THE 2018 UKM FST POSTGRADUATE COLLOQUIUM: Proceedings of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology 2018 Postgraduate Colloquium, Volume 2111 (2019), p. 020010 | DOI:10.1063/1.5111217
- , Volume 1974 (2018), p. 030018 | DOI:10.1063/1.5041662
- Faber Polynomial Coefficient Estimates for Bi-univalent Functions Defined by the Tremblay Fractional Derivative Operator, Bulletin of the Iranian Mathematical Society, Volume 44 (2018) no. 1, p. 149 | DOI:10.1007/s41980-018-0011-3
- Faber polynomial coefficient estimates for a class of analytic bi-univalent functions involving a certain differential operator, Asian-European Journal of Mathematics, Volume 10 (2017) no. 01, p. 1750016 | DOI:10.1142/s1793557117500164
- Coefficients Bounds for Certain Subclass of Biunivalent Functions Associated with Ruscheweyh q-Differential Operator, Journal of Complex Analysis, Volume 2017 (2017), p. 1 | DOI:10.1155/2017/2826514
- On a new subclass of bi-univalent functions of Sakaguchi type satisfying subordinate conditions, Malaya Journal of Matematik, Volume 5 (2017) no. 02, p. 305 | DOI:10.26637/mjm502/008
- Second Hankel determinant for certain subclasses ofbi-univalent functions, TURKISH JOURNAL OF MATHEMATICS, Volume 41 (2017), p. 694 | DOI:10.3906/mat-1602-25
- , Volume 1726 (2016), p. 020078 | DOI:10.1063/1.4945904
- Estimation of initial coefficients of certain λ-bi-starlike analytic functions, Asian-European Journal of Mathematics, Volume 09 (2016) no. 03, p. 1650066 | DOI:10.1142/s1793557116500662
- Upper Bound of Second Hankel Determinant for Bi-Bazilevic̆ Functions, Mediterranean Journal of Mathematics, Volume 13 (2016) no. 6, p. 4081 | DOI:10.1007/s00009-016-0733-5
- Second Hankel determinant for bi-starlike and bi-convex functions of order β, Applied Mathematics and Computation, Volume 271 (2015), p. 301 | DOI:10.1016/j.amc.2015.09.010
- Coefficient Estimates for Two New Subclasses of Biunivalent Functions with respect to Symmetric Points, Journal of Function Spaces, Volume 2015 (2015), p. 1 | DOI:10.1155/2015/145242
- Coefficient Bounds for Certain Subclasses ofm-Fold Symmetric Biunivalent Functions, Journal of Mathematics, Volume 2015 (2015), p. 1 | DOI:10.1155/2015/241683
Cité par 42 documents. Sources : Crossref
Commentaires - Politique