Comptes Rendus
Complex analysis
Faber polynomial coefficient estimates for analytic bi-close-to-convex functions
[Estimation des coefficients des fonctions analytiques bi-presque convexes à lʼaide des polynômes de Faber]
Comptes Rendus. Mathématique, Volume 352 (2014) no. 1, pp. 17-20.

Nous exprimons les coefficients des développements de fonctions analytiques bi-presque convexes en utilisant les polynômes de Faber, et nous en déduisons des estimations de ces coefficients. Une fonction est dite bi-univalente dans un domaine si elle et son inverse sont univalentes dans ce domaine. Nous montrons également le comportement imprévisible des premiers coefficients pour des sous-classes de fonctions bi-univalentes.

Using the Faber polynomials, we obtain coefficient expansions for analytic bi-close-to-convex functions and determine coefficient estimates for such functions. We also demonstrate the unpredictable behavior of the early coefficients of subclasses of bi-univalent functions. A function is said to be bi-univalent in a domain if both the function and its inverse map are univalent there.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2013.11.005

Samaneh G. Hamidi 1 ; Jay M. Jahangiri 2

1 Institute of Mathematical Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
2 Department of Mathematical Sciences, Kent State University, Burton, OH 44021-9500, USA
@article{CRMATH_2014__352_1_17_0,
     author = {Samaneh G. Hamidi and Jay M. Jahangiri},
     title = {Faber polynomial coefficient estimates for analytic bi-close-to-convex functions},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {17--20},
     publisher = {Elsevier},
     volume = {352},
     number = {1},
     year = {2014},
     doi = {10.1016/j.crma.2013.11.005},
     language = {en},
}
TY  - JOUR
AU  - Samaneh G. Hamidi
AU  - Jay M. Jahangiri
TI  - Faber polynomial coefficient estimates for analytic bi-close-to-convex functions
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 17
EP  - 20
VL  - 352
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crma.2013.11.005
LA  - en
ID  - CRMATH_2014__352_1_17_0
ER  - 
%0 Journal Article
%A Samaneh G. Hamidi
%A Jay M. Jahangiri
%T Faber polynomial coefficient estimates for analytic bi-close-to-convex functions
%J Comptes Rendus. Mathématique
%D 2014
%P 17-20
%V 352
%N 1
%I Elsevier
%R 10.1016/j.crma.2013.11.005
%G en
%F CRMATH_2014__352_1_17_0
Samaneh G. Hamidi; Jay M. Jahangiri. Faber polynomial coefficient estimates for analytic bi-close-to-convex functions. Comptes Rendus. Mathématique, Volume 352 (2014) no. 1, pp. 17-20. doi : 10.1016/j.crma.2013.11.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.11.005/

[1] H. Airault Symmetric sums associated to the factorization of Grunsky coefficients, Montréal, Canada (27–29 April 2007)

[2] H. Airault Remarks on Faber polynomials, Int. Math. Forum, Volume 3 (2008) no. 9–12, pp. 449-456 MR2386197 (2009a:30037)

[3] H. Airault; A. Bouali Differential calculus on the Faber polynomials, Bull. Sci. Math., Volume 130 (2006) no. 3, pp. 179-222 MR2215663 (2007e:30002)

[4] H. Airault; J. Ren An algebra of differential operators and generating functions on the set of univalent functions, Bull. Sci. Math., Volume 126 (2002) no. 5, pp. 343-367 MR1914725 (2004c:17048)

[5] D.A. Brannan; J.G. Clunie Aspects of Contemporary Complex Analysis, Academic Press, London and New York, 1980 MR0623462 (82f:30001)

[6] D.A. Brannan; T.S. Taha On some classes of bi-univalent functions, Stud. Univ. Babeş–Bolyai, Math., Volume 31 (1986) no. 2, pp. 70-77 MR0911858 (88k:30012)

[7] L. de Branges A proof of the Bieberbach conjecture, Acta Math., Volume 154 (1985) no. 1–2, pp. 137-152

[8] P.L. Duren Univalent Functions, Grundlehren der Mathematischen Wissenschaften, vol. 259, Springer, New York, 1983 MR0708494 (85j:30034)

[9] G. Faber Über polynomische Entwickelungen, Math. Ann., Volume 57 (1903) no. 3, pp. 389-408 (MR1511216)

[10] S.G. Hamidi; S.A. Halim; J.M. Jahangiri Faber polynomial coefficient estimates for meromorphic bi-starlike functions, Int. J. Math. Math. Sci. (2013), pp. 1-4 (Art. ID 498159)

[11] S.G. Hamidi; S.A. Halim; J.M. Jahangiri Coefficient estimates for a class of meromorphic bi-univalent functions, C. R. Acad. Sci. Paris, Ser. I, Volume 351 (2013), pp. 349-352

[12] W. Kaplan Close-to-convex schlicht functions, Mich. Math. J., Volume 1 (1952), pp. 169-185

[13] M. Lewin On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., Volume 18 (1967), pp. 63-68 MR0206255 (34 #6074)

[14] E. Netanyahu The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in |z|<1, Arch. Ration. Mech. Anal., Volume 32 (1969), pp. 100-112

[15] T.S. Taha Topics in univalent function theory, University of London, 1981 (Ph.D. thesis)

[16] P.G. Todorov On the Faber polynomials of the univalent functions of class Σ, J. Math. Anal. Appl., Volume 162 (1991) no. 1, pp. 268-276 MR1135277 (93d:30023)

  • Maitham Alwan Huneidi; Waggas Galib Atshan, 3RD INTERNATIONAL CONFERENCE ON MATHEMATICS, AI, INFORMATION AND COMMUNICATION TECHNOLOGIES: ICMAICT2023, Volume 3264 (2025), p. 050130 | DOI:10.1063/5.0258429
  • Mohamed A. Mamon; Borhen Halouani; Ibrahim S. Elshazly; Gangadharan Murugusundaramoorthy; Alaa H. El-Qadeem Second Hankel Determinant Bound Application to Certain Family of Bi-Univalent Functions, Axioms, Volume 13 (2024) no. 12, p. 819 | DOI:10.3390/axioms13120819
  • Huo Tang; Prathviraj Sharma; Srikandan Sivasubramanian Coefficient Estimates for New Subclasses of Bi-Univalent Functions with Bounded Boundary Rotation by Using Faber Polynomial Technique, Axioms, Volume 13 (2024) no. 8, p. 509 | DOI:10.3390/axioms13080509
  • H. M. Srivastava; Shahid Khan; Sarfraz Nawaz Malik; Fairouz Tchier; Afis Saliu; Qin Xin Faber polynomial coefficient inequalities for bi-Bazilevič functions associated with the Fibonacci-number series and the square-root functions, Journal of Inequalities and Applications, Volume 2024 (2024) no. 1 | DOI:10.1186/s13660-024-03090-9
  • Hari Mohan Srivastava; Pishtiwan Othman Sabir; Sevtap Sümer Eker; Abbas Kareem Wanas; Pshtiwan Othman Mohammed; Nejmeddine Chorfi; Dumitru Baleanu Some m-fold symmetric bi-univalent function classes and their associated Taylor-Maclaurin coefficient bounds, Journal of Inequalities and Applications, Volume 2024 (2024) no. 1 | DOI:10.1186/s13660-024-03114-4
  • H. U. Rehman,; K. A. Mashrafi,; J. Salah, Estimating the Second Order Hankel Determinant for the Subclass of Bi-Close-to-Convex Function of Complex Order, Malaysian Journal of Mathematical Sciences, Volume 18 (2024) no. 1, p. 91 | DOI:10.47836/mjms.18.1.06
  • Zeya Jia; Alina Alb Lupaş; Haifa Bin Jebreen; Georgia Irina Oros; Teodor Bulboacă; Qazi Zahoor Ahmad Fractional Differential Operator Based on Quantum Calculus and Bi-Close-to-Convex Functions, Mathematics, Volume 12 (2024) no. 13, p. 2026 | DOI:10.3390/math12132026
  • Arzu Akgül On a New Subclass of Bi-Univalent Analytic Functions Characterized by (P,Q)-Lucas Polynomial Coefficients via Sălăgean Differential Operator, Operators, Inequalities and Approximation (2024), p. 159 | DOI:10.1007/978-981-97-3238-8_8
  • Timilehin Gideon Shaba; Serkan Araci; Babatunde Olufemi Adebesin; Fuat Usta; Bilal Khan Characterization of Bi-Starlike Functions: A Daehee Polynomial Approach, Symmetry, Volume 16 (2024) no. 12, p. 1640 | DOI:10.3390/sym16121640
  • Mohammad Faisal Khan Certain new applications of Faber polynomial expansion for some new subclasses of υ-fold symmetric bi-univalent functions associated with q-calculus, AIMS Mathematics, Volume 8 (2023) no. 5, p. 10283 | DOI:10.3934/math.2023521
  • Daniel Breaz; Halit Orhan; Luminiţa-Ioana Cotîrlă; Hava Arıkan A New Subclass of Bi-Univalent Functions Defined by a Certain Integral Operator, Axioms, Volume 12 (2023) no. 2, p. 172 | DOI:10.3390/axioms12020172
  • Hari Mohan Srivastava; Isra Al-Shbeil; Qin Xin; Fairouz Tchier; Shahid Khan; Sarfraz Nawaz Malik Faber Polynomial Coefficient Estimates for Bi-Close-to-Convex Functions Defined by the q-Fractional Derivative, Axioms, Volume 12 (2023) no. 6, p. 585 | DOI:10.3390/axioms12060585
  • Mohammad Faisal Khan; Suha B. Al-Shaikh; Ahmad A. Abubaker; Khaled Matarneh New Applications of Faber Polynomials and q-Fractional Calculus for a New Subclass of m-Fold Symmetric bi-Close-to-Convex Functions, Axioms, Volume 12 (2023) no. 6, p. 600 | DOI:10.3390/axioms12060600
  • Ferdous M. O. Tawfiq; Fairouz Tchier; Luminita-Ioana Cotîrlă Faber Polynomial Coefficient Inequalities for a Subclass of Bi-Close-To-Convex Functions Associated with Fractional Differential Operator, Fractal and Fractional, Volume 7 (2023) no. 12, p. 883 | DOI:10.3390/fractalfract7120883
  • Mohammad Faisal Khan; Mohammed AbaOud Some New Applications of the Faber Polynomial Expansion Method for Generalized Bi-Subordinate Functions of Complex Order γ Defined by q-Calculus, Fractal and Fractional, Volume 7 (2023) no. 3, p. 270 | DOI:10.3390/fractalfract7030270
  • Ridong Wang; Manoj Singh; Shahid Khan; Huo Tang; Mohammad Faisal Khan; Mustafa Kamal New Applications of Faber Polynomial Expansion for Analytical Bi-Close-to-Convex Functions Defined by Using q-Calculus, Mathematics, Volume 11 (2023) no. 5, p. 1217 | DOI:10.3390/math11051217
  • Shahid Khan; Şahsene Altınkaya; Qin Xin; Fairouz Tchier; Sarfraz Nawaz Malik; Nazar Khan Faber Polynomial Coefficient Estimates for Janowski Type bi-Close-to-Convex and bi-Quasi-Convex Functions, Symmetry, Volume 15 (2023) no. 3, p. 604 | DOI:10.3390/sym15030604
  • Chetan Swarup Certain New Applications of Faber Polynomial Expansion for a New Class of bi-Univalent Functions Associated with Symmetric q-Calculus, Symmetry, Volume 15 (2023) no. 7, p. 1407 | DOI:10.3390/sym15071407
  • Zeya Jia; Nazar Khan; Shahid Khan; Bilal Khan Faber polynomial coefficients estimates for certain subclasses of q-Mittag-Leffler-Type analytic and bi-univalent functions, AIMS Mathematics, Volume 7 (2022) no. 2, p. 2512 | DOI:10.3934/math.2022141
  • Sheza. M. El-Deeb; Gangadharan Murugusundaramoorthy; Kaliyappan Vijaya; Alhanouf Alburaikan Certain class of bi-univalent functions defined by quantum calculus operator associated with Faber polynomial, AIMS Mathematics, Volume 7 (2022) no. 2, p. 2989 | DOI:10.3934/math.2022165
  • Mohammad Faisal Khan; Shahid Khan; Nazar Khan; Jihad Younis; Bilal Khan; Muhammad Rashid Applications of q-Symmetric Derivative Operator to the Subclass of Analytic and Bi-Univalent Functions Involving the Faber Polynomial Coefficients, Mathematical Problems in Engineering, Volume 2022 (2022), p. 1 | DOI:10.1155/2022/4250878
  • Neslihan Uyanik; Ozdemir Gokkurt Coefficients bounds for a subclass of bi-univalent functions defined by Al-Oboudi differential operator, Thermal Science, Volume 26 (2022) no. Spec. issue 2, p. 583 | DOI:10.2298/tsci22s2583u
  • Serap Bulut Coefficient estimates for Libera type bi-close-to-convex functions, Mathematica Slovaca, Volume 71 (2021) no. 6, p. 1401 | DOI:10.1515/ms-2021-0060
  • Hari M. Srivastava; Ahmad Motamednezhad; Ebrahim Analouei Adegani Faber Polynomial Coefficient Estimates for Bi-Univalent Functions Defined by Using Differential Subordination and a Certain Fractional Derivative Operator, Mathematics, Volume 8 (2020) no. 2, p. 172 | DOI:10.3390/math8020172
  • Ala A. Amourah, Volume 2096 (2019), p. 020024 | DOI:10.1063/1.5097821
  • G. Saravanan; K. Muthunagai, Volume 2096 (2019), p. 030023 | DOI:10.1063/1.5097534
  • Mostafa Jafari; Teodor Bulboaca; Ahmad Zireh; Ebrahim Analouei Adegani Simple criteria for univalence and coefficient bounds for a certain subclass of analytic functions, Communications Faculty Of Science University of Ankara Series A1Mathematics and Statistics (2019), p. 394 | DOI:10.31801/cfsuasmas.596546
  • Alaa Hassan El-Qadeem; Mohammed Ahmed Mamon Estimation of initial Maclaurin coefficients of certain subclasses of bounded bi-univalent functions, Journal of the Egyptian Mathematical Society, Volume 27 (2019) no. 1 | DOI:10.1186/s42787-019-0015-z
  • Nak Eun Cho; Ebrahim Analouei Adegani; Serap Bulut; Ahmad Motamednezhad The Second Hankel Determinant Problem for a Class of Bi-Close-to-Convex Functions, Mathematics, Volume 7 (2019) no. 10, p. 986 | DOI:10.3390/math7100986
  • Mohd Nazran Mohammed Pauzi; Maslina Darus; Saibah Siregar, THE 2018 UKM FST POSTGRADUATE COLLOQUIUM: Proceedings of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology 2018 Postgraduate Colloquium, Volume 2111 (2019), p. 020010 | DOI:10.1063/1.5111217
  • Chow Li Yong; Aini Janteng; Suzeini Abd. Halim, Volume 1974 (2018), p. 030018 | DOI:10.1063/1.5041662
  • H. M. Srivastava; S. Sümer Eker; S. G. Hamidi; J. M. Jahangiri Faber Polynomial Coefficient Estimates for Bi-univalent Functions Defined by the Tremblay Fractional Derivative Operator, Bulletin of the Iranian Mathematical Society, Volume 44 (2018) no. 1, p. 149 | DOI:10.1007/s41980-018-0011-3
  • Poonam Sharma Faber polynomial coefficient estimates for a class of analytic bi-univalent functions involving a certain differential operator, Asian-European Journal of Mathematics, Volume 10 (2017) no. 01, p. 1750016 | DOI:10.1142/s1793557117500164
  • Saqib Hussain; Shahid Khan; Muhammad Asad Zaighum; Maslina Darus; Zahid Shareef Coefficients Bounds for Certain Subclass of Biunivalent Functions Associated with Ruscheweyh q-Differential Operator, Journal of Complex Analysis, Volume 2017 (2017), p. 1 | DOI:10.1155/2017/2826514
  • Şahsene Altınkaya; Sibel Yalcin On a new subclass of bi-univalent functions of Sakaguchi type satisfying subordinate conditions, Malaya Journal of Matematik, Volume 5 (2017) no. 02, p. 305 | DOI:10.26637/mjm502/008
  • Murat ÇAĞLAR; Erhan DENİZ; Hari Mohan SRIVASTAVA Second Hankel determinant for certain subclasses ofbi-univalent functions, TURKISH JOURNAL OF MATHEMATICS, Volume 41 (2017), p. 694 | DOI:10.3906/mat-1602-25
  • Murat Çağlar; Selçuk Aslan, Volume 1726 (2016), p. 020078 | DOI:10.1063/1.4945904
  • A. K. Mishra; S. Barik Estimation of initial coefficients of certain λ-bi-starlike analytic functions, Asian-European Journal of Mathematics, Volume 09 (2016) no. 03, p. 1650066 | DOI:10.1142/s1793557116500662
  • Şahsene Altınkaya; Sibel Yalçın Upper Bound of Second Hankel Determinant for Bi-Bazilevic̆ Functions, Mediterranean Journal of Mathematics, Volume 13 (2016) no. 6, p. 4081 | DOI:10.1007/s00009-016-0733-5
  • Erhan Deniz; Murat Çağlar; Halit Orhan Second Hankel determinant for bi-starlike and bi-convex functions of order β, Applied Mathematics and Computation, Volume 271 (2015), p. 301 | DOI:10.1016/j.amc.2015.09.010
  • Şahsene Altınkaya; Sibel Yalçın Coefficient Estimates for Two New Subclasses of Biunivalent Functions with respect to Symmetric Points, Journal of Function Spaces, Volume 2015 (2015), p. 1 | DOI:10.1155/2015/145242
  • Şahsene Altınkaya; Sibel Yalçın Coefficient Bounds for Certain Subclasses ofm-Fold Symmetric Biunivalent Functions, Journal of Mathematics, Volume 2015 (2015), p. 1 | DOI:10.1155/2015/241683

Cité par 42 documents. Sources : Crossref

Commentaires - Politique