Comptes Rendus
Statistics
New Kernel-type estimator of Shanonnʼs entropy
Comptes Rendus. Mathématique, Volume 352 (2014) no. 1, pp. 75-80.

In the present Note, we propose an estimator of Shanonnʼs entropy based on smooth estimators of quantile density. The consistency and asymptotic normality of the proposed estimates are obtained.

Dans cette Note, nous proposons un nouvel estimateur de lʼentropie de Shanonn basé sur lʼestimateur à noyau de la densité de quantile. Nous obtenons la consistance et la normalité de lʼestimateur proposé.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2013.11.011

Salim Bouzebda 1; Issam Elhattab 2

1 Laboratoire de mathématiques appliquées de Compiègne, Université de technologie de Compiègne, BP 529, 60205 Compiègne cedex, France
2 ENCG–Casablanca, Université Hassan-II Mohammedia, Morocco
@article{CRMATH_2014__352_1_75_0,
     author = {Salim Bouzebda and Issam Elhattab},
     title = {New {Kernel-type} estimator of {Shanonn's} entropy},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {75--80},
     publisher = {Elsevier},
     volume = {352},
     number = {1},
     year = {2014},
     doi = {10.1016/j.crma.2013.11.011},
     language = {en},
}
TY  - JOUR
AU  - Salim Bouzebda
AU  - Issam Elhattab
TI  - New Kernel-type estimator of Shanonnʼs entropy
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 75
EP  - 80
VL  - 352
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crma.2013.11.011
LA  - en
ID  - CRMATH_2014__352_1_75_0
ER  - 
%0 Journal Article
%A Salim Bouzebda
%A Issam Elhattab
%T New Kernel-type estimator of Shanonnʼs entropy
%J Comptes Rendus. Mathématique
%D 2014
%P 75-80
%V 352
%N 1
%I Elsevier
%R 10.1016/j.crma.2013.11.011
%G en
%F CRMATH_2014__352_1_75_0
Salim Bouzebda; Issam Elhattab. New Kernel-type estimator of Shanonnʼs entropy. Comptes Rendus. Mathématique, Volume 352 (2014) no. 1, pp. 75-80. doi : 10.1016/j.crma.2013.11.011. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.11.011/

[1] I.A. Ahmad; P.E. Lin A nonparametric estimation of the entropy for absolutely continuous distributions, IEEE Trans. Inf. Theory, Volume IT-22 (1976) no. 3, pp. 372-375

[2] R. Ash Information Theory, Intersci. Tracts Pure Appl. Math., vol. 19, Interscience Publishers, John Wiley & Sons, New York–London–Sydney, 1965

[3] J. Beirlant; E.J. Dudewicz; L. Györfi; E.C. van der Meulen Nonparametric entropy estimation: an overview, Int. J. Math. Stat. Sci., Volume 6 (1997) no. 1, pp. 17-39

[4] T. Berger Rate distortion theory, A Mathematical Basis for Data Compression, Prentice-Hall Ser. Inf. Syst. Sci., Prentice Hall Inc., Englewood Cliffs, NJ, 1971

[5] S. Bouzebda; I. Elhattab A strong consistency of a nonparametric estimate of entropy under random censorship, C. R. Acad. Sci. Paris, Ser. I, Volume 347 (2009) no. 13–14, pp. 821-826

[6] S. Bouzebda; I. Elhattab Uniform-in-bandwidth consistency for kernel-type estimators of Shannonʼs entropy, Electron. J. Stat., Volume 5 (2011), pp. 440-459

[7] S. Bouzebda; I. Elhattab; A. Keziou; L. Lounis New entropy estimator with an application to test of normality, Commun. Stat., Theory Methods, Volume 42 (2013) no. 12, pp. 2245-2270

[8] C. Cheng Uniform consistency of generalized kernel estimators of quantile density, Ann. Stat., Volume 23 (1995) no. 6, pp. 2285-2291

[9] C. Cheng; E. Parzen Unified estimators of smooth quantile and quantile density functions, J. Stat. Plan. Inference, Volume 59 (1997) no. 2, pp. 291-307

[10] T.M. Cover; J.A. Thomas Elements of Information Theory, Wiley–Interscience [John Wiley & Sons], Hoboken, NJ, 2006

[11] M. Csörgő; L. Horváth; P. Deheuvels Estimating the quantile-density function, Spetses, 1990 (NATO Adv. Stud. Inst. Ser., Ser. C, Math. Phys. Sci.), Volume vol. 335, Kluwer Acad. Publ., Dordrecht (1991), pp. 213-223

[12] J.G. Dmitriev; F.P. Tarasenko The estimation of functionals of a probability density and its derivatives, Teor. Verojatnost. i Primenen., Volume 18 (1973), pp. 662-668

[13] M.D. Esteban; M.E. Castellanos; D. Morales; I. Vajda Monte Carlo comparison of four normality tests using different entropy estimates, Commun. Stat., Simul. Comput., Volume 30 (2001) no. 4, pp. 761-785

[14] M. Falk On the estimation of the quantile density function, Stat. Probab. Lett., Volume 4 (1986) no. 2, pp. 69-73

[15] L. Györfi; E.C. van der Meulen On the nonparametric estimation of the entropy functional, Spetses, 1990 (NATO Adv. Stud. Inst. Ser., Ser. C, Math. Phys. Sci.), Volume vol. 335, Kluwer Acad. Publ., Dordrecht (1991), pp. 81-95

[16] E. Parzen Nonparametric statistical data modeling, J. Am. Stat. Assoc., Volume 74 (1979) no. 365, pp. 105-131 (with comments by John W. Tukey, Roy E. Welsch, William F. Eddy, D.V. Lindley, Michael E. Tarter and Edwin L. Crow, and a rejoinder by the author)

[17] E. Parzen Goodness of fit tests and entropy, J. Comb. Inf. Syst. Sci., Volume 16 (1991) no. 2–3, pp. 129-136

[18] C.E. Shannon A mathematical theory of communication, Bell Syst. Tech. J., Volume 27 (1948), pp. 379-423 (623–656)

[19] K.-S. Song Limit theorems for nonparametric sample entropy estimators, Stat. Probab. Lett., Volume 49 (2000) no. 1, pp. 9-18

[20] S.M. Sunoj; P.G. Sankaran Quantile based entropy function, Stat. Probab. Lett., Volume 82 (2012) no. 6, pp. 1049-1053

[21] S.M. Sunoj; P.G. Sankaran; A.K. Nanda Quantile based entropy function in past lifetime, Stat. Probab. Lett., Volume 83 (2013) no. 1, pp. 366-372

[22] B. van Es Estimating functionals related to a density by a class of statistics based on spacings, Scand. J. Stat., Volume 19 (1992) no. 1, pp. 61-72

[23] O. Vasicek A test for normality based on sample entropy, J. R. Stat. Soc. B, Volume 38 (1976) no. 1, pp. 54-59

[24] R. Wieczorkowski; P. Grzegorzewski Entropy estimators—improvements and comparisons, Commun. Stat., Simul. Comput., Volume 28 (1999) no. 2, pp. 541-567

Cited by Sources:

Comments - Policy