Comptes Rendus
Functional analysis/Mathematical physics
Well-posedness and approximation of a measure-valued mass evolution problem with flux boundary conditions
Comptes Rendus. Mathématique, Volume 352 (2014) no. 1, pp. 51-54.

This Note deals with imposing a flux boundary condition on a non-conservative measure-valued mass evolution problem posed on a bounded interval. To establish the well-posedness of the problem, we exploit particle system approximations of the mass accumulation in a thin layer near the active boundary. We derive the convergence rate for the approximation procedure as well as the structure of the flux boundary condition in the limit problem.

Dans cette Note, nous étudions lʼévolution de mesures (de masse) dans un intervalle borné où la dynamique non conservative est imposée à lʼaide de conditions frontières de type flux. Nous montrons le caractère bien posé du problème en exploitant des systèmes de particules et lʼaccumulation de masse provoquée par ces particules dans une couche limite tout près de la frontière active. Finalement, nous obtenons la vitesse de convergence de la procedure dʼapproximation ainsi que la structure de la condition de frontière concernant le problème limite.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2013.11.012

Joep Evers 1; Sander C. Hille 2; Adrian Muntean 1

1 CASA – Centre for Analysis, Scientific computing and Applications, ICMS – Institute for Complex Molecular Systems, Eindhoven University of Technology, The Netherlands
2 Mathematical Institute, Leiden University, The Netherlands
@article{CRMATH_2014__352_1_51_0,
     author = {Joep Evers and Sander C. Hille and Adrian Muntean},
     title = {Well-posedness and approximation of a measure-valued mass evolution problem with flux boundary conditions},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {51--54},
     publisher = {Elsevier},
     volume = {352},
     number = {1},
     year = {2014},
     doi = {10.1016/j.crma.2013.11.012},
     language = {en},
}
TY  - JOUR
AU  - Joep Evers
AU  - Sander C. Hille
AU  - Adrian Muntean
TI  - Well-posedness and approximation of a measure-valued mass evolution problem with flux boundary conditions
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 51
EP  - 54
VL  - 352
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crma.2013.11.012
LA  - en
ID  - CRMATH_2014__352_1_51_0
ER  - 
%0 Journal Article
%A Joep Evers
%A Sander C. Hille
%A Adrian Muntean
%T Well-posedness and approximation of a measure-valued mass evolution problem with flux boundary conditions
%J Comptes Rendus. Mathématique
%D 2014
%P 51-54
%V 352
%N 1
%I Elsevier
%R 10.1016/j.crma.2013.11.012
%G en
%F CRMATH_2014__352_1_51_0
Joep Evers; Sander C. Hille; Adrian Muntean. Well-posedness and approximation of a measure-valued mass evolution problem with flux boundary conditions. Comptes Rendus. Mathématique, Volume 352 (2014) no. 1, pp. 51-54. doi : 10.1016/j.crma.2013.11.012. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.11.012/

[1] A.S. Ackleh; K. Ito Measure-valued solutions for a hierarchically size-structured population, J. Differential Equations, Volume 217 (2005), pp. 431-455

[2] J.A. Canizo; J.A. Carrillo; S. Cuadrado Measure solutions for some models in population dynamics, Acta Appl. Math., Volume 123 (2013), pp. 141-156

[3] J.A. Carrillo; R.M. Colombo; P. Gwiazda; A. Ulikowska Structured populations, cell growth and measure valued balance laws, J. Differential Equations, Volume 252 (2012), pp. 3245-3277

[4] E.N.M. Cirillo; A. Muntean Can cooperation slow down emergency evacuations?, C. R. Mecanique, Volume 340 (2012), pp. 625-628

[5] J. Evers; S.C. Hille; A. Muntean (2012), pp. 12-35 (CASA Report, Eindhoven)

[6] S.C. Hille; D.T.H. Worm Embedding of semigroups of Lipschitz maps into positive linear semigroups on ordered Banach spaces generated by measures, Integral Equations Operator Theory, Volume 63 (2009), pp. 351-371

[7] A. Pazy Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, Berlin, 1983

[8] K. Taira Semigroups, Boundary Value Problems and Markov Processes, Springer, Berlin, 2004

Cited by Sources:

Comments - Policy