Comptes Rendus
Functional analysis/Probability theory
A refinement of the Brascamp–Lieb–Poincaré inequality in one dimension
Comptes Rendus. Mathématique, Volume 352 (2014) no. 1, pp. 55-58.

In this short note, we give a refinement of the Brascamp–Lieb inequality in the style of the Houdré–Kagan extension for the Poincaré inequality in one dimension. This is inspired by works by Helffer and by Ledoux.

Dans cette brève Note, on donne un raffinement de lʼinégalité de Brascamp–Lieb [1] dans le style de lʼextension de Houdré–Kagan [3] pour lʼinégalité de Poincaré en une dimension. Cette Note est inspirée par les travaux de Helffer et de Ledoux.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2013.11.013

Ionel Popescu 1, 2

1 School of Mathematics, Georgia Institute of Technology, 686 Cherry Street, Atlanta, GA 30332, USA
2 “Simion Stoilow” Institute of Mathematics of Romanian Academy, 21 Calea Griviţei, Bucharest, Romania
@article{CRMATH_2014__352_1_55_0,
     author = {Ionel Popescu},
     title = {A refinement of the {Brascamp{\textendash}Lieb{\textendash}Poincar\'e} inequality in one dimension},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {55--58},
     publisher = {Elsevier},
     volume = {352},
     number = {1},
     year = {2014},
     doi = {10.1016/j.crma.2013.11.013},
     language = {en},
}
TY  - JOUR
AU  - Ionel Popescu
TI  - A refinement of the Brascamp–Lieb–Poincaré inequality in one dimension
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 55
EP  - 58
VL  - 352
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crma.2013.11.013
LA  - en
ID  - CRMATH_2014__352_1_55_0
ER  - 
%0 Journal Article
%A Ionel Popescu
%T A refinement of the Brascamp–Lieb–Poincaré inequality in one dimension
%J Comptes Rendus. Mathématique
%D 2014
%P 55-58
%V 352
%N 1
%I Elsevier
%R 10.1016/j.crma.2013.11.013
%G en
%F CRMATH_2014__352_1_55_0
Ionel Popescu. A refinement of the Brascamp–Lieb–Poincaré inequality in one dimension. Comptes Rendus. Mathématique, Volume 352 (2014) no. 1, pp. 55-58. doi : 10.1016/j.crma.2013.11.013. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.11.013/

[1] H.J. Brascamp; E.H. Lieb On extensions of the Brunn–Minkowski and Prékopa–Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation, J. Funct. Anal., Volume 22 (1976) no. 4, pp. 366-389

[2] B. Helffer Remarks on decay of correlations and Witten Laplacians, Brascamp–Lieb inequalities and semiclassical limit, J. Funct. Anal., Volume 155 (1998) no. 2, pp. 571-586

[3] C. Houdré; A. Kagan Variance inequalities for functions of Gaussian variables, J. Theor. Probab., Volume 8 (1995) no. 1, pp. 23-30

[4] M. Ledoux Lʼalgèbre de Lie des gradients itérés dʼun générateur markovien – Développements de moyennes et entropies, Ann. Sci. Éc. Norm. Super. (4), Volume 28 (1995) no. 4, pp. 435-460

Cited by Sources:

Comments - Policy