The goal of this paper is to generalize most of the moment formulae obtained in [6]. More precisely, we consider a general point process μ, and show that the relevant quantities to our problem are the so-called Papangelou intensities. Then, we show some general formulae to recover the moment of order n of the stochastic integral of a random process. We will use these extended results to study a random transformation of the point process. The full proofs can be found in [2].
L'objectif de ce papier est de généraliser la plupart des formules de moments obtenues dans [6]. Nous calculons les moments de tous ordres des intégrales stochastiques d'un processus ponctuel en fonction de son intensité de Papangelou. Nous utilisons ensuite ces résultats pour généraliser la formule d'isométrie de Skorohod pour les intégrales stochastiques compensées. Enfin, nous étudions la loi d'une transformation aléatoire du processus ponctuel sous une condition de cyclicité qui généralise la notion d'adaptabilité à un espace de dimension quelconque.
Accepted:
Published online:
Laurent Decreusefond 1; Ian Flint 1
@article{CRMATH_2014__352_4_357_0, author = {Laurent Decreusefond and Ian Flint}, title = {Moment formulae for general point processes}, journal = {Comptes Rendus. Math\'ematique}, pages = {357--361}, publisher = {Elsevier}, volume = {352}, number = {4}, year = {2014}, doi = {10.1016/j.crma.2013.11.016}, language = {en}, }
Laurent Decreusefond; Ian Flint. Moment formulae for general point processes. Comptes Rendus. Mathématique, Volume 352 (2014) no. 4, pp. 357-361. doi : 10.1016/j.crma.2013.11.016. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.11.016/
[1] An Introduction to the Theory of Point Processes. Vol. I, Elementary Theory and Methods, Probability and Its Applications, Springer-Verlag, New York, 2003
[2] Moment formulae for general point processes, November 2012 | HAL
[3] Conditional intensity and Gibbsianness of determinantal point processes, J. Stat. Phys., Volume 118 (2005) no. 1–2, pp. 55-84
[4] Random Measures, Akademie-Verlag, Berlin, 1986
[5] Stochastic Analysis in Discrete and Continuous Settings with Normal Martingales, Lecture Notes in Mathematics, vol. 1982, Springer-Verlag, Berlin, 2009
[6] Invariance of Poisson measures under random transformations, Ann. Inst. Henri Poincaré Probab. Stat., Volume 48 (2012), pp. 947-972
[7] N. Privault, Moments of Poisson stochastic integrals with random integrands, 2012.
[8] Random point fields associated with certain Fredholm determinants. I. Fermion, Poisson and Boson point processes, J. Funct. Anal., Volume 205 (2003) no. 2, pp. 414-463
Cited by Sources:
Comments - Policy