Comptes Rendus
Topology/Dynamical systems
A note on homotopy classes of nonsingular vector fields on S3
Comptes Rendus. Mathématique, Volume 352 (2014) no. 4, pp. 351-355.

The homotopy class (up to homeomorphism) of nonsingular vector fields on S3 are in one-to-one correspondence with N via the homotopy number. We prove that each homotopy class with a nonzero homotopy number can be represented by two nonsingular Morse–Smale vector fields with three periodic orbits. Notice that it is already known that the nonsingular Morse–Smale vector field with two periodic orbits has homotopy number 0.

Les classes d'homotopie (à homéomorphisme près) de champs de vecteurs sans singularité sur la sphère S3 sont indexées, via le nombre d'homotopie, par les entiers positifs. Nous montrons que chaque classe de nombre d'homotopie non nul peut être représentée par deux champs de vecteurs de type Morse–Smale sans singularité, avec trois orbites périodiques. Ce résultat est optimal, puisqu'on sait déjà que tout champ avec deux orbites périodiques a 0 pour nombre d'homotopie.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2014.01.016

Bin Yu 1

1 Department of Mathematics, Tongji University, Shanghai 2000 92, China
@article{CRMATH_2014__352_4_351_0,
     author = {Bin Yu},
     title = {A note on homotopy classes of nonsingular vector fields on $ {S}^{3}$},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {351--355},
     publisher = {Elsevier},
     volume = {352},
     number = {4},
     year = {2014},
     doi = {10.1016/j.crma.2014.01.016},
     language = {en},
}
TY  - JOUR
AU  - Bin Yu
TI  - A note on homotopy classes of nonsingular vector fields on $ {S}^{3}$
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 351
EP  - 355
VL  - 352
IS  - 4
PB  - Elsevier
DO  - 10.1016/j.crma.2014.01.016
LA  - en
ID  - CRMATH_2014__352_4_351_0
ER  - 
%0 Journal Article
%A Bin Yu
%T A note on homotopy classes of nonsingular vector fields on $ {S}^{3}$
%J Comptes Rendus. Mathématique
%D 2014
%P 351-355
%V 352
%N 4
%I Elsevier
%R 10.1016/j.crma.2014.01.016
%G en
%F CRMATH_2014__352_4_351_0
Bin Yu. A note on homotopy classes of nonsingular vector fields on $ {S}^{3}$. Comptes Rendus. Mathématique, Volume 352 (2014) no. 4, pp. 351-355. doi : 10.1016/j.crma.2014.01.016. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.01.016/

[1] E. Dufraine About homotopy classes of non-singular vector fields on the three-sphere, Qual. Theory Dyn. Syst., Volume 3 (2002) no. 2, pp. 361-376

[2] S. Hurder; A. Rechtman The dynamics of generic Kuperberg flows | arXiv

[3] K. Kuperberg A smooth counterexample to the Seifert conjecture, Ann. Math. (2), Volume 140 (1994) no. 3, pp. 723-732

[4] R.S. MacKay Complicated dynamics from simple topological hypotheses, Philos. Trans. R. Soc., Math. Phys. Eng. Sci., Volume 359 (2000), pp. 1479-1496

[5] W.D. Neumann; L. Rudolph Difference index of vector fields and the enhanced Milnor number, Topology, Volume 29 (1990) no. 1, pp. 83-100

[6] F.W. Wilson Some examples of nonsingular Morse–Smale vector fields on S3, Ann. Inst. Fourier (Grenoble), Volume 27 (1977) no. 2, pp. 145-159

[7] K. Yano The homotopy class of nonsingular Morse–Smale vector fields on 3-manifolds, Invent. Math., Volume 80 (1985) no. 3, pp. 435-451

[8] B. Yu Depth 0 nonsingular Morse Smale flows on S3 | arXiv

Cited by Sources:

Comments - Policy