The homotopy class (up to homeomorphism) of nonsingular vector fields on are in one-to-one correspondence with via the homotopy number. We prove that each homotopy class with a nonzero homotopy number can be represented by two nonsingular Morse–Smale vector fields with three periodic orbits. Notice that it is already known that the nonsingular Morse–Smale vector field with two periodic orbits has homotopy number 0.
Les classes d'homotopie (à homéomorphisme près) de champs de vecteurs sans singularité sur la sphère sont indexées, via le nombre d'homotopie, par les entiers positifs. Nous montrons que chaque classe de nombre d'homotopie non nul peut être représentée par deux champs de vecteurs de type Morse–Smale sans singularité, avec trois orbites périodiques. Ce résultat est optimal, puisqu'on sait déjà que tout champ avec deux orbites périodiques a 0 pour nombre d'homotopie.
Accepted:
Published online:
Bin Yu 1
@article{CRMATH_2014__352_4_351_0, author = {Bin Yu}, title = {A note on homotopy classes of nonsingular vector fields on $ {S}^{3}$}, journal = {Comptes Rendus. Math\'ematique}, pages = {351--355}, publisher = {Elsevier}, volume = {352}, number = {4}, year = {2014}, doi = {10.1016/j.crma.2014.01.016}, language = {en}, }
Bin Yu. A note on homotopy classes of nonsingular vector fields on $ {S}^{3}$. Comptes Rendus. Mathématique, Volume 352 (2014) no. 4, pp. 351-355. doi : 10.1016/j.crma.2014.01.016. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.01.016/
[1] About homotopy classes of non-singular vector fields on the three-sphere, Qual. Theory Dyn. Syst., Volume 3 (2002) no. 2, pp. 361-376
[2] The dynamics of generic Kuperberg flows | arXiv
[3] A smooth counterexample to the Seifert conjecture, Ann. Math. (2), Volume 140 (1994) no. 3, pp. 723-732
[4] Complicated dynamics from simple topological hypotheses, Philos. Trans. R. Soc., Math. Phys. Eng. Sci., Volume 359 (2000), pp. 1479-1496
[5] Difference index of vector fields and the enhanced Milnor number, Topology, Volume 29 (1990) no. 1, pp. 83-100
[6] Some examples of nonsingular Morse–Smale vector fields on , Ann. Inst. Fourier (Grenoble), Volume 27 (1977) no. 2, pp. 145-159
[7] The homotopy class of nonsingular Morse–Smale vector fields on 3-manifolds, Invent. Math., Volume 80 (1985) no. 3, pp. 435-451
[8] Depth 0 nonsingular Morse Smale flows on | arXiv
Cited by Sources:
Comments - Policy