Comptes Rendus
Numerical analysis/Calculus of variations
New Poincaré-type inequalities
[Quelques inégalités de type Poincaré pour les champs de matrices quadratiques]
Comptes Rendus. Mathématique, Volume 352 (2014) no. 2, pp. 163-166.

We present some Poincaré-type inequalities for quadratic matrix fields with applications e.g. in gradient plasticity or fluid dynamics. In particular, applications to the pseudostress–velocity formulation of the stationary Stokes problem and to infinitesimal gradient plasticity are discussed.

On présente quelques inégalités de type Poincaré pour les champs de matrices quadratiques, avec des applications, par exemple, en plasticité avec gradients ou en dynamique des fluides. En particulier, on discute des applications pour la formulation en vitesse de pseudo-tension du problème stationnaire de Stokes et pour la plasticité infinitésimale avec gradients.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2013.11.017

Sebastian Bauer 1 ; Patrizio Neff 1 ; Dirk Pauly 1 ; Gerhard Starke 1

1 Fakultät für Mathematik, Universität Duisburg–Essen, Campus Essen, Thea-Leymann-Str. 9, 45141 Essen, Germany
@article{CRMATH_2014__352_2_163_0,
     author = {Sebastian Bauer and Patrizio Neff and Dirk Pauly and Gerhard Starke},
     title = {New {Poincar\'e-type} inequalities},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {163--166},
     publisher = {Elsevier},
     volume = {352},
     number = {2},
     year = {2014},
     doi = {10.1016/j.crma.2013.11.017},
     language = {en},
}
TY  - JOUR
AU  - Sebastian Bauer
AU  - Patrizio Neff
AU  - Dirk Pauly
AU  - Gerhard Starke
TI  - New Poincaré-type inequalities
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 163
EP  - 166
VL  - 352
IS  - 2
PB  - Elsevier
DO  - 10.1016/j.crma.2013.11.017
LA  - en
ID  - CRMATH_2014__352_2_163_0
ER  - 
%0 Journal Article
%A Sebastian Bauer
%A Patrizio Neff
%A Dirk Pauly
%A Gerhard Starke
%T New Poincaré-type inequalities
%J Comptes Rendus. Mathématique
%D 2014
%P 163-166
%V 352
%N 2
%I Elsevier
%R 10.1016/j.crma.2013.11.017
%G en
%F CRMATH_2014__352_2_163_0
Sebastian Bauer; Patrizio Neff; Dirk Pauly; Gerhard Starke. New Poincaré-type inequalities. Comptes Rendus. Mathématique, Volume 352 (2014) no. 2, pp. 163-166. doi : 10.1016/j.crma.2013.11.017. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.11.017/

[1] D.N. Arnold; J. Douglas; C.P. Gupta A family of higher order mixed finite element methods for plane elasticity, Numer. Math., Volume 45 (1984) no. 1, pp. 1-22

[2] S. Bauer; P. Neff; D. Pauly; G. Starke Dev–div- and devsym–devcurl-inequalities for incompatible square tensor fields with mixed boundary conditions (submitted for publication) | arXiv

[3] F. Brezzi; M. Fortin Mixed and Hybrid Finite Element Methods, Springer, New York, 1991

[4] Z. Cai; B. Lee; P. Wang Least squares methods for incompressible Newtonian fluid flow: Linear stationary problems, SIAM J. Numer. Anal., Volume 42 (2004), pp. 843-859

[5] Z. Cai; G. Starke Least squares methods for linear elasticity, SIAM J. Numer. Anal., Volume 42 (2004), pp. 826-842

[6] Z. Cai; C. Tong; P.S. Vassilevski; C. Wang Mixed finite element methods for incompressible flow: Stationary Stokes equations, Numer. Methods Partial Differ. Equ., Volume 26 (2010), pp. 957-978

[7] S. Dain Generalized Kornʼs inequality and conformal Killing vectors, Calc. Var. Partial Differ. Equ., Volume 25 (2006) no. 4, pp. 535-540

[8] F. Ebobisse; P. Neff Rate-independent infinitesimal gradient plasticity with isotropic hardening and plastic spin, Math. Mech. Solids, Volume 15 (2010) no. 6, pp. 691-703

[9] M. Fuchs Generalizations of Kornʼs inequality based on gradient estimates in Orlicz spaces and applications to variational problems in 2D involving the trace free part of the symmetric gradient, J. Math. Sci. (N.Y.), Volume 167 (2010) no. 3, pp. 418-434

[10] G. Gatica; A. Márquez; M.A. Sánchez Analysis of a velocity–pressure–pseudostress formulation for the stationary Stokes equations, Comput. Methods Appl. Mech. Eng., Volume 199 (2010), pp. 1064-1079

[11] J. Jeong; P. Neff Existence, uniqueness and stability in linear Cosserat elasticity for weakest curvature conditions, Math. Mech. Solids, Volume 15 (2010) no. 1, pp. 78-95

[12] P. Neff; K. Chełmiński; H.D. Alber Notes on strain gradient plasticity. Finite strain covariant modelling and global existence in the infinitesimal rate-independent case, Math. Models Methods Appl. Sci., Volume 19 (2009) no. 2, pp. 1-40

[13] P. Neff; D. Pauly; K.J. Witsch On a canonical extension of Kornʼs first inequality to H(Curl) motivated by gradient plasticity with plastic spin, C. R. Acad. Sci. Paris, Ser. I, Volume 349 (2011) no. 23–24, pp. 1251-1254

[14] P. Neff; D. Pauly; K.J. Witsch On a canonical extension of Kornʼs first and Poincaréʼs inequality to H(Curl), J. Math. Sci. (N.Y.), Volume 185 (2012) no. 5, pp. 721-727

[15] P. Neff; D. Pauly; K.J. Witsch Maxwell meets Korn: a new coercive inequality for tensor fields in RN×N with square-integrable exterior derivative, Math. Methods Appl. Sci., Volume 35 (2012) no. 1, pp. 65-71

[16] P. Neff, D. Pauly, K.J. Witsch, Poincaré meets Korn via Maxwell: Extending Kornʼs first inequality to incompatible tensor fields, in: Modeling, Simulation and Optimization in Science and Technology (2 Workshops honoring Jacques Périaux and Roland Glowinski on the occasion of their 70th and 75th birthdays), Springer, 2013, accepted, . | arXiv

[17] P. Neff; D. Pauly; K.J. Witsch On an extension of Kornʼs first inequality to incompatible tensor fields in arbitrary dimensions (submitted for publication) | arXiv

[18] P. Neff; A. Sydow; C. Wieners Numerical approximation of incremental infinitesimal gradient plasticity, Int. J. Numer. Methods Eng., Volume 77 (2009) no. 3, pp. 414-436

[19] S. Nesenenko; P. Neff Well-posedness for dislocation based gradient visco-plasticity. I: Subdifferential case, SIAM J. Math. Anal., Volume 44 (2012) no. 3, pp. 1694-1712

[20] S. Nesenenko; P. Neff Well-posedness for dislocation based gradient visco-plasticity. II: Monotone case, MEMOCS: Math. Mech. Complex Syst., Volume 1 (2013) no. 2, pp. 149-176

[21] H. Sohr The Navier–Stokes Equations, Birkhäuser, Basel, Switzerland, 2001

  • Xixi Xiong; Mei Xiong; Longwei Chen; Min Luo; Yimin Yu Existence uniqueness and stability analysis of solutions for the fractional fuzzy cellular neural networks with impulse and reaction diffusion, Mathematical and Computer Modelling of Dynamical Systems, Volume 31 (2025) no. 1 | DOI:10.1080/13873954.2025.2515875
  • Ionel-Dumitrel Ghiba; Gianluca Rizzi; Angela Madeo; Patrizio Neff Cosserat micropolar elasticity: classical Eringen vs. dislocation form, Journal of Mechanics of Materials and Structures, Volume 18 (2023) no. 1, p. 93 | DOI:10.2140/jomms.2023.18.93
  • Adam Sky; Michael Neunteufel; Ingo Muench; Joachim Schöberl; Patrizio Neff Primal and mixed finite element formulations for the relaxed micromorphic model, Computer Methods in Applied Mechanics and Engineering, Volume 399 (2022), p. 115298 | DOI:10.1016/j.cma.2022.115298
  • François Ebobisse; Patrizio Neff A fourth-order gauge-invariant gradient plasticity model for polycrystals based on Kröner’s incompatibility tensor, Mathematics and Mechanics of Solids, Volume 25 (2020) no. 2, p. 129 | DOI:10.1177/1081286519845026
  • François Ebobisse; Klaus Hackl; Patrizio Neff A canonical rate-independent model of geometrically linear isotropic gradient plasticity with isotropic hardening and plastic spin accounting for the Burgers vector, Continuum Mechanics and Thermodynamics, Volume 31 (2019) no. 5, p. 1477 | DOI:10.1007/s00161-019-00755-5
  • François Ebobisse; Patrizio Neff; Samuel Forest Well-posedness for the microcurl model in both single and polycrystal gradient plasticity, International Journal of Plasticity, Volume 107 (2018), p. 1 | DOI:10.1016/j.ijplas.2017.01.006
  • Angela Madeo; Gabriele Barbagallo; Manuel Collet; Marco Valerio d’Agostino; Marco Miniaci; Patrizio Neff Relaxed micromorphic modeling of the interface between a homogeneous solid and a band-gap metamaterial: New perspectives towards metastructural design, Mathematics and Mechanics of Solids, Volume 23 (2018) no. 12, p. 1485 | DOI:10.1177/1081286517728423
  • François Ebobisse; Patrizio Neff; Elias C Aifantis Existence result for a dislocation based model of single crystal gradient plasticity with isotropic or linear kinematic hardening, The Quarterly Journal of Mechanics and Applied Mathematics, Volume 71 (2018) no. 1, p. 99 | DOI:10.1093/qjmam/hbx026
  • Gabriele Barbagallo; Angela Madeo; Marco Valerio d’Agostino; Rafael Abreu; Ionel-Dumitrel Ghiba; Patrizio Neff Transparent anisotropy for the relaxed micromorphic model: Macroscopic consistency conditions and long wave length asymptotics, International Journal of Solids and Structures, Volume 120 (2017), p. 7 | DOI:10.1016/j.ijsolstr.2017.01.030
  • Angela Madeo; Patrizio Neff; Gabriele Barbagallo; Marco Valerio d’Agostino; Ionel-Dumitrel Ghiba A Review on Wave Propagation Modeling in Band-Gap Metamaterials via Enriched Continuum Models, Mathematical Modelling in Solid Mechanics, Volume 69 (2017), p. 89 | DOI:10.1007/978-981-10-3764-1_6
  • Ionel-Dumitrel Ghiba; Patrizio Neff; Angela Madeo; Ingo Münch A variant of the linear isotropic indeterminate couple-stress model with symmetric local force-stress, symmetric nonlocal force-stress, symmetric couple-stresses and orthogonal boundary conditions, Mathematics and Mechanics of Solids, Volume 22 (2017) no. 6, p. 1221 | DOI:10.1177/1081286515625535
  • Patrizio Neff; Angela Madeo; Gabriele Barbagallo; Marco Valerio d'Agostino; Rafael Abreu; Ionel-Dumitrel Ghiba Real wave propagation in the isotropic-relaxed micromorphic model, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 473 (2017) no. 2197, p. 20160790 | DOI:10.1098/rspa.2016.0790
  • Angela Madeo; Patrizio Neff; Elias C. Aifantis; Gabriele Barbagallo; Marco Valerio d’Agostino On the role of micro-inertia in enriched continuum mechanics, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 473 (2017) no. 2198, p. 20160722 | DOI:10.1098/rspa.2016.0722
  • Angela Madeo; Gabriele Barbagallo; Marco Valerio d’Agostino; Luca Placidi; Patrizio Neff First evidence of non-locality in real band-gap metamaterials: determining parameters in the relaxed micromorphic model, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 472 (2016) no. 2190, p. 20160169 | DOI:10.1098/rspa.2016.0169
  • Steffen Münzenmaier First‐Order system least squares for generalized‐Newtonian coupled Stokes‐Darcy flow, Numerical Methods for Partial Differential Equations, Volume 31 (2015) no. 4, p. 1150 | DOI:10.1002/num.21939
  • Patrizio Neff; Ionel-Dumitrel Ghiba; Angela Madeo; Luca Placidi; Giuseppe Rosi A unifying perspective: the relaxed linear micromorphic continuum, Continuum Mechanics and Thermodynamics, Volume 26 (2014) no. 5, p. 639 | DOI:10.1007/s00161-013-0322-9
  • Ionel‐Dumitrel Ghiba; Patrizio Neff; Angela Madeo The relaxed micromorphic continuum model, PAMM, Volume 14 (2014) no. 1, p. 733 | DOI:10.1002/pamm.201410349

Cité par 17 documents. Sources : Crossref

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: