We show how to combine our earlier results to deduce strong convergence of the interfaces in the planar critical Ising model and its random-cluster representation to Schrammʼs SLE curves with parameters and , respectively.
Cet article explique comment combiner certains résultats antérieurs des différents auteurs afin de montrer la convergence forte des interfaces du modèle dʼIsing critique planaire et de sa représentation FK vers les courbes et introduites par Schramm.
Accepted:
Published online:
Dmitry Chelkak 1, 2; Hugo Duminil-Copin 3; Clément Hongler 4; Antti Kemppainen 5; Stanislav Smirnov 1, 3
@article{CRMATH_2014__352_2_157_0, author = {Dmitry Chelkak and Hugo Duminil-Copin and Cl\'ement Hongler and Antti Kemppainen and Stanislav Smirnov}, title = {Convergence of {Ising} interfaces to {Schramm's} {SLE} curves}, journal = {Comptes Rendus. Math\'ematique}, pages = {157--161}, publisher = {Elsevier}, volume = {352}, number = {2}, year = {2014}, doi = {10.1016/j.crma.2013.12.002}, language = {en}, }
TY - JOUR AU - Dmitry Chelkak AU - Hugo Duminil-Copin AU - Clément Hongler AU - Antti Kemppainen AU - Stanislav Smirnov TI - Convergence of Ising interfaces to Schrammʼs SLE curves JO - Comptes Rendus. Mathématique PY - 2014 SP - 157 EP - 161 VL - 352 IS - 2 PB - Elsevier DO - 10.1016/j.crma.2013.12.002 LA - en ID - CRMATH_2014__352_2_157_0 ER -
%0 Journal Article %A Dmitry Chelkak %A Hugo Duminil-Copin %A Clément Hongler %A Antti Kemppainen %A Stanislav Smirnov %T Convergence of Ising interfaces to Schrammʼs SLE curves %J Comptes Rendus. Mathématique %D 2014 %P 157-161 %V 352 %N 2 %I Elsevier %R 10.1016/j.crma.2013.12.002 %G en %F CRMATH_2014__352_2_157_0
Dmitry Chelkak; Hugo Duminil-Copin; Clément Hongler; Antti Kemppainen; Stanislav Smirnov. Convergence of Ising interfaces to Schrammʼs SLE curves. Comptes Rendus. Mathématique, Volume 352 (2014) no. 2, pp. 157-161. doi : 10.1016/j.crma.2013.12.002. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.12.002/
[1] Hölder regularity and dimension bounds for random curves, Duke Math. J., Volume 99 (1999) no. 3, pp. 419-453
[2] Infinite conformal symmetry of critical fluctuations in two dimensions, J. Stat. Phys., Volume 34 (1984) no. 5–6, pp. 763-774
[3] Robust discrete complex analysis: a toolbox, 2012 (Preprint) | arXiv
[4] D. Chelkak, H. Duminil-Copin, Clément Hongler, Crossing probabilities in topological rectangles for the critical planar FK Ising model, Preprint, , 2013. | arXiv
[5] Conformal invariance of spin correlations in the planar Ising model, 2012 (Preprint) | arXiv
[6] Holomorphic spinor observables in the critical Ising model, Commun. Math. Phys., Volume 322 (2013) no. 2, pp. 303-332
[7] Universality in the 2D Ising model and conformal invariance of fermionic observables, Invent. Math., Volume 189 (2012) no. 3, pp. 515-580
[8] Connection probabilities and RSW-type bounds for the two-dimensional FK Ising model, Commun. Pure Appl. Math., Volume 64 (2011) no. 9, pp. 1165-1198
[9] Conformal invariance of lattice models, Probability and Statistical Physics in Two and More Dimensions, Clay Math. Proc., vol. 15, Amer. Math. Soc., Providence, RI, 2012, pp. 213-276
[10] Conformal invariance of Ising model correlations, 2010 (PhD thesis)
[11] The energy density in the planar Ising model, Acta. Math., Volume 211 (2013) no. 2, pp. 191-225
[12] Random curves, scaling limits and Loewner evolutions, 2012 (Preprint) | arXiv
[13] Conformally Invariant Processes in the Plane, Mathematical Surveys and Monographs, vol. 114, American Mathematical Society, Providence, RI, 2005
[14] Conformal invariance of planar loop-erased random walks and uniform spanning trees, Ann. Probab., Volume 32 (2004) no. 1B, pp. 939-995
[15] Boundary Behaviour of Conformal Maps, Grundlehren der Mathematischen Wissenschaften, Fundamental Principles of Mathematical Sciences, vol. 299, Springer-Verlag, Berlin, 1992
[16] Scaling limits of loop-erased random walks and uniform spanning trees, Isr. J. Math., Volume 118 (2000), pp. 221-288
[17] Towards conformal invariance of 2D lattice models, International Congress of Mathematicians, vol. II, Eur. Math. Soc., Zurich, 2006, pp. 1421-1451
[18] Conformal invariance in random cluster models. I. Holomorphic fermions in the Ising model, Ann. Math., Volume 172 (2010) no. 2, pp. 1435-1467
Cited by Sources:
Comments - Policy