Comptes Rendus
Partial differential equations/Mathematical physics
The Ostrovsky–Vakhnenko equation: A Riemann–Hilbert approach
[L'équation d'Ostrovsky–Vakhnenko : Une approche de type Riemann–Hilbert]
Comptes Rendus. Mathématique, Volume 352 (2014) no. 3, pp. 189-195.

Nous présentons une étude par diffusion inverse de l'équation (différentiée) d'Ostrovsky–Vakhnenko :

utxx3ux+3uxuxx+uuxxx=0.
Cette équation peut aussi se voir comme le modèle « ondes courtes » de l'équation de Degasperis–Procesi. Notre approche consiste à se ramener à l'étude d'un problème de Riemann–Hilbert associé. Elle nous permet d'obtenir une représentation de la solution classique (lisse) du problème de Cauchy et de déterminer le terme principal de l'asymptotique à temps grand de cette solution. Elle permet aussi d'obtenir, de façon naturelle, des solutions solitons de type à boucle.

We present an inverse scattering transform approach for the (differentiated) Ostrovsky–Vakhnenko equation:

utxx3ux+3uxuxx+uuxxx=0.
This equation can also be viewed as the short-wave model for the Degasperis–Procesi equation. The approach is based on an associated Riemann–Hilbert problem, which allows us to give a representation for the classical (smooth) solution of the Cauchy problem, to get the principal term of its long-time asymptotics, and also to find, in a natural way, loop soliton solutions.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2014.01.001
Anne Boutet de Monvel 1 ; Dmitry Shepelsky 2

1 Institut de mathématiques de Jussieu–PRG, Université Denis-Diderot (Paris-7), case 7012, bât. Sophie-Germain, 75205 Paris cedex 13, France
2 Verkin Institute for Low Temperature Physics and Engineering, 47 Lenin Avenue, 61103 Kharkiv, Ukraine
@article{CRMATH_2014__352_3_189_0,
     author = {Anne Boutet de Monvel and Dmitry Shepelsky},
     title = {The {Ostrovsky{\textendash}Vakhnenko} equation: {A} {Riemann{\textendash}Hilbert} approach},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {189--195},
     publisher = {Elsevier},
     volume = {352},
     number = {3},
     year = {2014},
     doi = {10.1016/j.crma.2014.01.001},
     language = {en},
}
TY  - JOUR
AU  - Anne Boutet de Monvel
AU  - Dmitry Shepelsky
TI  - The Ostrovsky–Vakhnenko equation: A Riemann–Hilbert approach
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 189
EP  - 195
VL  - 352
IS  - 3
PB  - Elsevier
DO  - 10.1016/j.crma.2014.01.001
LA  - en
ID  - CRMATH_2014__352_3_189_0
ER  - 
%0 Journal Article
%A Anne Boutet de Monvel
%A Dmitry Shepelsky
%T The Ostrovsky–Vakhnenko equation: A Riemann–Hilbert approach
%J Comptes Rendus. Mathématique
%D 2014
%P 189-195
%V 352
%N 3
%I Elsevier
%R 10.1016/j.crma.2014.01.001
%G en
%F CRMATH_2014__352_3_189_0
Anne Boutet de Monvel; Dmitry Shepelsky. The Ostrovsky–Vakhnenko equation: A Riemann–Hilbert approach. Comptes Rendus. Mathématique, Volume 352 (2014) no. 3, pp. 189-195. doi : 10.1016/j.crma.2014.01.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.01.001/

[1] A. Boutet de Monvel; D. Shepelsky Long-time asymptotics of the Camassa–Holm equation on the line, Contemporary Mathematics, Volume 458 (2008), pp. 99-116

[2] A. Boutet de Monvel; D. Shepelsky A Riemann–Hilbert approach for the Degasperis–Procesi equation, Nonlinearity, Volume 26 (2013) no. 7, pp. 2081-2107

[3] A. Boutet de Monvel; D. Shepelsky The Ostrovsky–Vakhnenko equation by a Riemann–Hilbert approach (preprint) | arXiv

[4] A. Boutet de Monvel; A. Kostenko; D. Shepelsky; G. Teschl Long-time asymptotics for the Camassa–Holm equation, SIAM J. Math. Anal., Volume 41 (2009) no. 4, pp. 1559-1588

[5] A. Boutet de Monvel; A. Its; D. Shepelsky Painlevé-type asymptotics for the Camassa–Holm equation, SIAM J. Math. Anal., Volume 42 (2010) no. 4, pp. 1854-1873

[6] A. Boutet de Monvel; D. Shepelsky; L. Zielinski The short-wave model for the Camassa–Holm equation: a Riemann–Hilbert approach, Inverse Probl., Volume 27 (2011), p. 105006

[7] J.P. Boyd Ostrovsky and Hunter's generic wave equation for weakly dispersive waves: matched asymptotic and pseudospectral study of the paraboloidal travelling waves (corner and near-corner waves), Eur. J. Appl. Math., Volume 16 (2005) no. 1, pp. 65-81

[8] J.P. Boyd; G.-Y. Chen Five regimes of the quasi-cnoidal, steadily translating waves of the rotation-modified Korteweg–de Vries (“Ostrovsky”) equation, Wave Motion, Volume 35 (2002) no. 2, pp. 141-155

[9] J.C. Brunelli; S. Sakovich Hamiltonian structures for the Ostrovsky–Vakhnenko equation, Commun. Nonlinear Sci. Numer. Simul., Volume 18 (2013), pp. 56-62

[10] A. Degasperis; M. Procesi Asymptotic integrability, Symmetry and Perturbation Theory, World Scientific Publishing, River Edge, NJ, USA, 1999, pp. 23-37

[11] P. Deift; X. Zhou A steepest descent method for oscillatory Riemann–Hilbert problem. Asymptotics for the MKdV equation, Ann. Math., Volume 137 (1993) no. 2, pp. 295-368

[12] J.K. Hunter Numerical solutions of some nonlinear dispersive wave equations (E. Allgower; K. Georg, eds.), Computational Solution of Nonlinear Systems of Equations, Lectures in Applied Mathematics, vol. 26, The American Mathematical Society, 1990, pp. 301-316

[13] Y. Matsuno Cusp and loop soliton solutions of short-wave models for the Camassa–Holm and Degasperis–Procesi equations, Phys. Lett. A, Volume 359 (2006) no. 5, pp. 451-457

[14] A.J. Morrison; E.J. Parkes; V.O. Vakhnenko The N-loop soliton solution of the Vakhnenko equation, Nonlinearity, Volume 12 (1999), pp. 1427-1437

[15] L.A. Ostrovsky Nonlinear internal waves in a rotation ocean, Oceanology, Volume 18 (1978), pp. 181-191

[16] E.J. Parkes The stability of solutions of Vakhnenko equation, J. Phys. A, Math. Gen., Volume 26 (1993), pp. 6469-6475

[17] Y.A. Stepanyants On stationary solutions of the reduced Ostrovsky equation: periodic waves, compactons and compound solitons, Chaos Solitons Fractals, Volume 28 (2006), pp. 193-204

[18] V.O. Vakhnenko Solitons in a nonlinear model medium, J. Phys. A, Math. Gen., Volume 25 (1992), pp. 4181-4187

[19] V.O. Vakhnenko High frequency soliton-like waves in a relaxing medium, J. Math. Phys., Volume 40 (1999), pp. 2011-2020

[20] V.O. Vakhnenko; E.J. Parkes The two loop soliton of the Vakhnenko equation, Nonlinearity, Volume 11 (1998), pp. 1457-1464

[21] V.O. Vakhnenko; E.J. Parkes The calculation of multi-soliton solutions of the Vakhnenko equation by the inverse scattering method, Chaos Solitons Fractals, Volume 13 (2002), pp. 1819-1826

[22] V.O. Vakhnenko; E.J. Parkes The singular solutions of a nonlinear evolution equation taking continuous part of the spectral data into account in inverse scattering method, Chaos Solitons Fractals, Volume 45 (2012), pp. 846-852

[23] A.-M. Wazwaz N-soliton solutions for the Vakhnenko equation and its generalized forms, Phys. Scr., Volume 82 (2010), p. 065006

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

On the vibrations of a string with a concentrated mass and rapidly oscillating density

Timur R. Gadyl'shin

C. R. Méca (2015)


The essential spectrum of N-body systems with asymptotically homogeneous order-zero interactions

Vladimir Georgescu; Victor Nistor

C. R. Math (2014)


Vertical symbols, Toeplitz operators on weighted Bergman spaces over the upper half-plane and very slowly oscillating functions

Crispin Herrera Yañez; Ondrej Hutník; Egor A. Maximenko

C. R. Math (2014)