Comptes Rendus
Partial differential equations
Asymptotic stability of the semilinear wave equation with boundary damping and source term
Comptes Rendus. Mathématique, Volume 352 (2014) no. 3, pp. 213-218.

In this paper, we consider the semilinear wave equation with boundary conditions. This work is devoted to prove the uniform decay rates of the wave equation with boundary, without imposing any restrictive growth near-zero assumption on the damping term.

Dans cet article, on considère l'équation des ondes semi-linéaire avec conditions aux limites. L'étude consiste à établir la décroissance uniforme des solutions du problème posé sans imposer de restrictions de croissance sur le terme d'amortissement au voisinage de zéro.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2014.01.005

Tae Gab Ha 1

1 Department of Mathematics, Pusan National University, 609-735, Republic of Korea
@article{CRMATH_2014__352_3_213_0,
     author = {Tae Gab Ha},
     title = {Asymptotic stability of the semilinear wave equation with boundary damping and source term},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {213--218},
     publisher = {Elsevier},
     volume = {352},
     number = {3},
     year = {2014},
     doi = {10.1016/j.crma.2014.01.005},
     language = {en},
}
TY  - JOUR
AU  - Tae Gab Ha
TI  - Asymptotic stability of the semilinear wave equation with boundary damping and source term
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 213
EP  - 218
VL  - 352
IS  - 3
PB  - Elsevier
DO  - 10.1016/j.crma.2014.01.005
LA  - en
ID  - CRMATH_2014__352_3_213_0
ER  - 
%0 Journal Article
%A Tae Gab Ha
%T Asymptotic stability of the semilinear wave equation with boundary damping and source term
%J Comptes Rendus. Mathématique
%D 2014
%P 213-218
%V 352
%N 3
%I Elsevier
%R 10.1016/j.crma.2014.01.005
%G en
%F CRMATH_2014__352_3_213_0
Tae Gab Ha. Asymptotic stability of the semilinear wave equation with boundary damping and source term. Comptes Rendus. Mathématique, Volume 352 (2014) no. 3, pp. 213-218. doi : 10.1016/j.crma.2014.01.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.01.005/

[1] F.D. Araruna; A.B. Maciel Existence and boundary stabilization of the semilinear wave equation, Nonlinear Anal., Volume 67 (2007), pp. 1288-1305

[2] M.M. Cavalcanti; V.N. Domingos Cavalcanti Existence and asymptotic stability for evolution problems on manifolds with damping and source terms, J. Math. Anal. Appl., Volume 291 (2004), pp. 109-127

[3] M.M. Cavalcanti; V.N. Domingos Cavalcanti; I. Lasiecka Well-posedness and optimal decay rates for the wave equation with nonlinear boundary damping–source interaction, J. Differ. Equ., Volume 236 (2007), pp. 407-459

[4] M.M. Cavalcanti; V.N. Domingos Cavalcanti; P. Martinez Existence and decay rate estimates for the wave equation with nonlinear boundary damping and source term, J. Differ. Equ., Volume 203 (2004), pp. 119-158

[5] M.M. Cavalcanti; V.N. Domingos Cavalcanti; P. Martinez General decay rate estimates for viscoelastic dissipative systems, Nonlinear Anal., Volume 68 (2008), pp. 177-193

[6] M.M. Cavalcanti; V.N. Domingos Cavalcanti; J.A. Soriano Global solvability and asymptotic stability for the wave equation with nonlinear feedback and source term on the boundary, Adv. Math. Sci. Appl., Volume 16 (2006) no. 2, pp. 661-696

[7] G. Chen Energy decay estimates and exact boundary value controllability for the wave equation in a bounded domain, J. Math. Pures Appl., Volume 58 (1979), pp. 249-273

[8] T.G. Ha Blow-up for semilinear wave equation with boundary damping and source terms, J. Math. Anal. Appl., Volume 390 (2012), pp. 328-334

[9] T.G. Ha, General stabilization for the wave equation with damping and source terms, preprint.

[10] T.G. Ha On viscoelastic wave equation with nonlinear boundary damping and source term, Commun. Pure Appl. Anal., Volume 9 (2010) no. 6, pp. 1543-1576

[11] A. Haraux Comportement à l'infini pour une équation des ondes non linéaire dissipative, C. R. Acad. Sci. Paris, Ser. A, Volume 287 (1978), pp. 507-509

[12] V. Komornik Exact Controllability and Stabilization. The Multiplier Method, John Wiley, Paris, 1994

[13] V. Komornik; E. Zuazua A direct method for boundary stabilization of the wave equation, J. Math. Pures Appl., Volume 69 (1990), pp. 33-54

[14] I. Lasiecka; D. Tataru Uniform boundary stabilization of semilinear wave equations with nonlinear boundary damping, Differ. Integral Equ., Volume 6 (1993) no. 3, pp. 507-533

[15] H.A. Levine; L.E. Payne Nonexistence theorems for the heat equation with nonlinear boundary conditions and for the porous medium equation backward in time, J. Differ. Equ., Volume 16 (1974), pp. 319-334

[16] P. Martinez A new method to obtain decay rate estimates for dissipative systems, ESAIM Control Optim. Calc. Var., Volume 4 (1999), pp. 419-444

[17] M. Nakao Asymptotic stability of the bounded of almost periodic solution of the wave equation with a nonlinear dissipative term, J. Math. Anal. Appl., Volume 58 (1977), pp. 336-343

[18] J.Y. Park; T.G. Ha Energy decay for nondissipative distributed systems with boundary damping and source term, Nonlinear Anal., Volume 70 (2009), pp. 2416-2434

[19] J.Y. Park; T.G. Ha Existence and asymptotic stability for the semilinear wave equation with boundary damping and source term, J. Math. Phys., Volume 49 (2008), p. 053511

[20] J.Y. Park; T.G. Ha Well-posedness and uniform decay rates for the Klein–Gordon equation with damping term and acoustic boundary conditions, J. Math. Phys., Volume 50 (2009), p. 013506

[21] J.Y. Park; T.G. Ha; Y.H. Kang Energy decay rates for solutions of the wave equation with boundary damping and source term, Z. Angew. Math. Phys., Volume 61 (2010), pp. 235-265

[22] E. Vitillaro Global existence for the wave equation with nonlinear boundary damping and source terms, J. Differ. Equ., Volume 186 (2002), pp. 259-298

[23] E. Zuazua Exponential decay for the semilinear wave equation with locally distributed damping, Commun. Partial Differ. Equ., Volume 15 (1990) no. 2, pp. 205-235

[24] E. Zuazua Uniform stabilization of the wave equation by nonlinear boundary feedback, SIAM J. Control Optim., Volume 28 (1990), pp. 466-478

Cited by Sources:

Comments - Policy