In this paper, we consider the semilinear wave equation with boundary conditions. This work is devoted to prove the uniform decay rates of the wave equation with boundary, without imposing any restrictive growth near-zero assumption on the damping term.
Dans cet article, on considère l'équation des ondes semi-linéaire avec conditions aux limites. L'étude consiste à établir la décroissance uniforme des solutions du problème posé sans imposer de restrictions de croissance sur le terme d'amortissement au voisinage de zéro.
Accepted:
Published online:
Tae Gab Ha 1
@article{CRMATH_2014__352_3_213_0, author = {Tae Gab Ha}, title = {Asymptotic stability of the semilinear wave equation with boundary damping and source term}, journal = {Comptes Rendus. Math\'ematique}, pages = {213--218}, publisher = {Elsevier}, volume = {352}, number = {3}, year = {2014}, doi = {10.1016/j.crma.2014.01.005}, language = {en}, }
Tae Gab Ha. Asymptotic stability of the semilinear wave equation with boundary damping and source term. Comptes Rendus. Mathématique, Volume 352 (2014) no. 3, pp. 213-218. doi : 10.1016/j.crma.2014.01.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.01.005/
[1] Existence and boundary stabilization of the semilinear wave equation, Nonlinear Anal., Volume 67 (2007), pp. 1288-1305
[2] Existence and asymptotic stability for evolution problems on manifolds with damping and source terms, J. Math. Anal. Appl., Volume 291 (2004), pp. 109-127
[3] Well-posedness and optimal decay rates for the wave equation with nonlinear boundary damping–source interaction, J. Differ. Equ., Volume 236 (2007), pp. 407-459
[4] Existence and decay rate estimates for the wave equation with nonlinear boundary damping and source term, J. Differ. Equ., Volume 203 (2004), pp. 119-158
[5] General decay rate estimates for viscoelastic dissipative systems, Nonlinear Anal., Volume 68 (2008), pp. 177-193
[6] Global solvability and asymptotic stability for the wave equation with nonlinear feedback and source term on the boundary, Adv. Math. Sci. Appl., Volume 16 (2006) no. 2, pp. 661-696
[7] Energy decay estimates and exact boundary value controllability for the wave equation in a bounded domain, J. Math. Pures Appl., Volume 58 (1979), pp. 249-273
[8] Blow-up for semilinear wave equation with boundary damping and source terms, J. Math. Anal. Appl., Volume 390 (2012), pp. 328-334
[9] T.G. Ha, General stabilization for the wave equation with damping and source terms, preprint.
[10] On viscoelastic wave equation with nonlinear boundary damping and source term, Commun. Pure Appl. Anal., Volume 9 (2010) no. 6, pp. 1543-1576
[11] Comportement à l'infini pour une équation des ondes non linéaire dissipative, C. R. Acad. Sci. Paris, Ser. A, Volume 287 (1978), pp. 507-509
[12] Exact Controllability and Stabilization. The Multiplier Method, John Wiley, Paris, 1994
[13] A direct method for boundary stabilization of the wave equation, J. Math. Pures Appl., Volume 69 (1990), pp. 33-54
[14] Uniform boundary stabilization of semilinear wave equations with nonlinear boundary damping, Differ. Integral Equ., Volume 6 (1993) no. 3, pp. 507-533
[15] Nonexistence theorems for the heat equation with nonlinear boundary conditions and for the porous medium equation backward in time, J. Differ. Equ., Volume 16 (1974), pp. 319-334
[16] A new method to obtain decay rate estimates for dissipative systems, ESAIM Control Optim. Calc. Var., Volume 4 (1999), pp. 419-444
[17] Asymptotic stability of the bounded of almost periodic solution of the wave equation with a nonlinear dissipative term, J. Math. Anal. Appl., Volume 58 (1977), pp. 336-343
[18] Energy decay for nondissipative distributed systems with boundary damping and source term, Nonlinear Anal., Volume 70 (2009), pp. 2416-2434
[19] Existence and asymptotic stability for the semilinear wave equation with boundary damping and source term, J. Math. Phys., Volume 49 (2008), p. 053511
[20] Well-posedness and uniform decay rates for the Klein–Gordon equation with damping term and acoustic boundary conditions, J. Math. Phys., Volume 50 (2009), p. 013506
[21] Energy decay rates for solutions of the wave equation with boundary damping and source term, Z. Angew. Math. Phys., Volume 61 (2010), pp. 235-265
[22] Global existence for the wave equation with nonlinear boundary damping and source terms, J. Differ. Equ., Volume 186 (2002), pp. 259-298
[23] Exponential decay for the semilinear wave equation with locally distributed damping, Commun. Partial Differ. Equ., Volume 15 (1990) no. 2, pp. 205-235
[24] Uniform stabilization of the wave equation by nonlinear boundary feedback, SIAM J. Control Optim., Volume 28 (1990), pp. 466-478
Cited by Sources:
Comments - Policy