We propose a theorem that extends the classical Lie approach to the case of fractional partial differential equations (fPDEs) of the Riemann–Liouville type in () dimensions.
Nous proposons un théorème qui generalise la méthode classique de Lie à l'étude d'équations aux derivées partielles fractionnaires de type Riemann–Liouville en () dimensions.
Accepted:
Published online:
Rosario Antonio Leo 1; Gabriele Sicuro 2; Piergiulio Tempesta 3, 4
@article{CRMATH_2014__352_3_219_0, author = {Rosario Antonio Leo and Gabriele Sicuro and Piergiulio Tempesta}, title = {A theorem on the existence of symmetries of fractional {PDEs}}, journal = {Comptes Rendus. Math\'ematique}, pages = {219--222}, publisher = {Elsevier}, volume = {352}, number = {3}, year = {2014}, doi = {10.1016/j.crma.2013.11.007}, language = {en}, }
TY - JOUR AU - Rosario Antonio Leo AU - Gabriele Sicuro AU - Piergiulio Tempesta TI - A theorem on the existence of symmetries of fractional PDEs JO - Comptes Rendus. Mathématique PY - 2014 SP - 219 EP - 222 VL - 352 IS - 3 PB - Elsevier DO - 10.1016/j.crma.2013.11.007 LA - en ID - CRMATH_2014__352_3_219_0 ER -
Rosario Antonio Leo; Gabriele Sicuro; Piergiulio Tempesta. A theorem on the existence of symmetries of fractional PDEs. Comptes Rendus. Mathématique, Volume 352 (2014) no. 3, pp. 219-222. doi : 10.1016/j.crma.2013.11.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.11.007/
[1] Invariance of a partial differential equation of fractional order under the Lie group of scaling transformations, J. Math. Anal. Appl., Volume 227 (1998), pp. 81-97
[2] , Phys. Scr. T (J.A.T. Machado; A.C.J. Luo; R.S. Barbosa; M.F. Silva; L.B. Figueiredo, eds.) (Group-invariant solutions of fractional differential equations, Nonlinear Science and Complexity), Volume 136, Springer, 2009, pp. 51-58
[3] Wright functions as scale-invariant solutions of the diffusion-wave equation, J. Comput. Appl. Math., Volume 11 (2000), pp. 175-191
[4] Scale-invariant solutions of a partial differential equation of fractional order, Fract. Calc. Appl. Anal., Volume 1 (1998), pp. 63-78
[5] Applications of Lie Groups to Differential Equations, Springer, 1986
[6] Leibniz rule for fractional derivatives generalized and an application to infinite series, SIAM J. Appl. Math., Volume 18 (1970) no. 3, pp. 658-674
[7] Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach Science Publishers, 1993
Cited by Sources:
Comments - Policy