Comptes Rendus
Partial differential equations/Mathematical physics
A theorem on the existence of symmetries of fractional PDEs
Comptes Rendus. Mathématique, Volume 352 (2014) no. 3, pp. 219-222.

We propose a theorem that extends the classical Lie approach to the case of fractional partial differential equations (fPDEs) of the Riemann–Liouville type in (1+1) dimensions.

Nous proposons un théorème qui generalise la méthode classique de Lie à l'étude d'équations aux derivées partielles fractionnaires de type Riemann–Liouville en (1+1) dimensions.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2013.11.007

Rosario Antonio Leo 1; Gabriele Sicuro 2; Piergiulio Tempesta 3, 4

1 Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, Via per Arnesano, 73100 Lecce, Italy
2 Dipartimento di Fisica “Enrico Fermi”, Università di Pisa, Italy
3 Departamento de Fisica Teorica II, Métodos Matemáticos de la Física, Universidad Complutense de Madrid, Ciudad Universitaria, 28040, Madrid, Spain
4 Instituto de Ciencias Matemáticas, C/ Nicolás Cabrera, No 13-15, 28049 Madrid, Spain
@article{CRMATH_2014__352_3_219_0,
     author = {Rosario Antonio Leo and Gabriele Sicuro and Piergiulio Tempesta},
     title = {A theorem on the existence of symmetries of fractional {PDEs}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {219--222},
     publisher = {Elsevier},
     volume = {352},
     number = {3},
     year = {2014},
     doi = {10.1016/j.crma.2013.11.007},
     language = {en},
}
TY  - JOUR
AU  - Rosario Antonio Leo
AU  - Gabriele Sicuro
AU  - Piergiulio Tempesta
TI  - A theorem on the existence of symmetries of fractional PDEs
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 219
EP  - 222
VL  - 352
IS  - 3
PB  - Elsevier
DO  - 10.1016/j.crma.2013.11.007
LA  - en
ID  - CRMATH_2014__352_3_219_0
ER  - 
%0 Journal Article
%A Rosario Antonio Leo
%A Gabriele Sicuro
%A Piergiulio Tempesta
%T A theorem on the existence of symmetries of fractional PDEs
%J Comptes Rendus. Mathématique
%D 2014
%P 219-222
%V 352
%N 3
%I Elsevier
%R 10.1016/j.crma.2013.11.007
%G en
%F CRMATH_2014__352_3_219_0
Rosario Antonio Leo; Gabriele Sicuro; Piergiulio Tempesta. A theorem on the existence of symmetries of fractional PDEs. Comptes Rendus. Mathématique, Volume 352 (2014) no. 3, pp. 219-222. doi : 10.1016/j.crma.2013.11.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.11.007/

[1] E. Buckwar; Y. Luchko Invariance of a partial differential equation of fractional order under the Lie group of scaling transformations, J. Math. Anal. Appl., Volume 227 (1998), pp. 81-97

[2] R.K. Gazizov; A.A. Kasatkin; S.Y. Lukashchuk; R.K. Gazizov; A.A. Kasatkin; S.Y. Lukashchuk, Phys. Scr. T (J.A.T. Machado; A.C.J. Luo; R.S. Barbosa; M.F. Silva; L.B. Figueiredo, eds.) (Group-invariant solutions of fractional differential equations, Nonlinear Science and Complexity), Volume 136, Springer, 2009, pp. 51-58

[3] R. Gorenflo; Yu. Luchko; F. Mainardi Wright functions as scale-invariant solutions of the diffusion-wave equation, J. Comput. Appl. Math., Volume 11 (2000), pp. 175-191

[4] Yu. Luchko; R. Gorenflo Scale-invariant solutions of a partial differential equation of fractional order, Fract. Calc. Appl. Anal., Volume 1 (1998), pp. 63-78

[5] P.J. Olver Applications of Lie Groups to Differential Equations, Springer, 1986

[6] T.J. Osler Leibniz rule for fractional derivatives generalized and an application to infinite series, SIAM J. Appl. Math., Volume 18 (1970) no. 3, pp. 658-674

[7] S.G. Samko; A.A. Kilbas; O.I. Marichev Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach Science Publishers, 1993

Cited by Sources:

Comments - Policy