A new q-analogue of bisnomial coefficients is proposed according to the generalized q-Fibonacci sequence suggested by Cigler's approach.
Nous proposons une nouvelle variante de q-analogue pour les coefficients binomiaux généralisés appelés coefficients bisnomiaux. Elle est basée sur les suites q-Fibonacci proposées par Cigler.
Accepted:
Published online:
Hacène Belbachir 1; Athmane Benmezai 2, 3
@article{CRMATH_2014__352_3_167_0, author = {Hac\`ene Belbachir and Athmane Benmezai}, title = {A \protect\emph{q}-analogue for bi\protect\textsuperscript{\protect\emph{s}}nomial coefficients and generalized {Fibonacci} sequences}, journal = {Comptes Rendus. Math\'ematique}, pages = {167--171}, publisher = {Elsevier}, volume = {352}, number = {3}, year = {2014}, doi = {10.1016/j.crma.2014.01.009}, language = {en}, }
TY - JOUR AU - Hacène Belbachir AU - Athmane Benmezai TI - A q-analogue for bisnomial coefficients and generalized Fibonacci sequences JO - Comptes Rendus. Mathématique PY - 2014 SP - 167 EP - 171 VL - 352 IS - 3 PB - Elsevier DO - 10.1016/j.crma.2014.01.009 LA - en ID - CRMATH_2014__352_3_167_0 ER -
Hacène Belbachir; Athmane Benmezai. A q-analogue for bisnomial coefficients and generalized Fibonacci sequences. Comptes Rendus. Mathématique, Volume 352 (2014) no. 3, pp. 167-171. doi : 10.1016/j.crma.2014.01.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.01.009/
[1] Lattice gas generalization of the hard hexagon model III q-trinomials coefficients, J. Stat. Phys., Volume 47 (1987), pp. 297-330
[2] Determining the mode for convolution power of discrete uniform distribution, Probab. Eng. Inf. Sci., Volume 25 (2011) no. 4, pp. 469-475
[3] Linear recurent sequences and powers of a square matrix, Integers, Volume 6 (2006), p. A12
[4] Expansion of Fibonacci and Lucas polynomials: An answer to Prodinger's question, J. Integer Seq., Volume 15 (2012) (Article 12.7.6., 5 pp)
[5] An alternative approach to Cigler's q-Lucas polynomials, J. Appl. Math. Comput., Volume 226 (2014), pp. 691-698
[6] Connection between ordinary multinomials, Fibonacci numbers, Bell polynomials and discrete uniform distribution, Ann. Math. Inform., Volume 35 (2008), pp. 21-30
[7] A note on Pascal T-triangles, Multinomial coefficients and Pascal pyramids, Fibonacci Q., Volume 24 (1986), pp. 140-144
[8] A new class of q-Fibonacci polynomials, Electron. J. Comb., Volume 10 (2003) (Article R19)
[9] Generating functions of central values of generalized Pascal triangles, Fibonacci Q., Volume 17 (1979), pp. 58-67
Cited by Sources:
Comments - Policy