Comptes Rendus
Combinatorics/Number theory
A q-analogue for bisnomial coefficients and generalized Fibonacci sequences
Comptes Rendus. Mathématique, Volume 352 (2014) no. 3, pp. 167-171.

A new q-analogue of bisnomial coefficients is proposed according to the generalized q-Fibonacci sequence suggested by Cigler's approach.

Nous proposons une nouvelle variante de q-analogue pour les coefficients binomiaux généralisés appelés coefficients bisnomiaux. Elle est basée sur les suites q-Fibonacci proposées par Cigler.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2014.01.009

Hacène Belbachir 1; Athmane Benmezai 2, 3

1 USTHB, Faculty of Mathematics, RECITS Laboratory, DG-RSDT, BP 32, El Alia 16111, Bab Ezzouar, Algiers, Algeria
2 University of Dely Brahim, Fac. of Eco. & Manag. Sc., RECITS Laboratory, DG-RSDT, Rue Ahmed Ouaked, Dely Brahim, Algiers, Algeria
3 University of Oran, Faculty of Sciences, BP 1524, ELM Naouer, 31000, Oran, Algeria
@article{CRMATH_2014__352_3_167_0,
     author = {Hac\`ene Belbachir and Athmane Benmezai},
     title = {A \protect\emph{q}-analogue for bi\protect\textsuperscript{\protect\emph{s}}nomial coefficients and generalized {Fibonacci} sequences},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {167--171},
     publisher = {Elsevier},
     volume = {352},
     number = {3},
     year = {2014},
     doi = {10.1016/j.crma.2014.01.009},
     language = {en},
}
TY  - JOUR
AU  - Hacène Belbachir
AU  - Athmane Benmezai
TI  - A q-analogue for bisnomial coefficients and generalized Fibonacci sequences
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 167
EP  - 171
VL  - 352
IS  - 3
PB  - Elsevier
DO  - 10.1016/j.crma.2014.01.009
LA  - en
ID  - CRMATH_2014__352_3_167_0
ER  - 
%0 Journal Article
%A Hacène Belbachir
%A Athmane Benmezai
%T A q-analogue for bisnomial coefficients and generalized Fibonacci sequences
%J Comptes Rendus. Mathématique
%D 2014
%P 167-171
%V 352
%N 3
%I Elsevier
%R 10.1016/j.crma.2014.01.009
%G en
%F CRMATH_2014__352_3_167_0
Hacène Belbachir; Athmane Benmezai. A q-analogue for bisnomial coefficients and generalized Fibonacci sequences. Comptes Rendus. Mathématique, Volume 352 (2014) no. 3, pp. 167-171. doi : 10.1016/j.crma.2014.01.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.01.009/

[1] G.E. Andrews; J. Baxter Lattice gas generalization of the hard hexagon model III q-trinomials coefficients, J. Stat. Phys., Volume 47 (1987), pp. 297-330

[2] H. Belbachir Determining the mode for convolution power of discrete uniform distribution, Probab. Eng. Inf. Sci., Volume 25 (2011) no. 4, pp. 469-475

[3] H. Belbachir; F. Bencherif Linear recurent sequences and powers of a square matrix, Integers, Volume 6 (2006), p. A12

[4] H. Belbachir; A. Benmezai Expansion of Fibonacci and Lucas polynomials: An answer to Prodinger's question, J. Integer Seq., Volume 15 (2012) (Article 12.7.6., 5 pp)

[5] H. Belbachir; A. Benmezai An alternative approach to Cigler's q-Lucas polynomials, J. Appl. Math. Comput., Volume 226 (2014), pp. 691-698

[6] H. Belbachir; S. Bouroubi; A. Khelladi Connection between ordinary multinomials, Fibonacci numbers, Bell polynomials and discrete uniform distribution, Ann. Math. Inform., Volume 35 (2008), pp. 21-30

[7] R.C. Bollinger A note on Pascal T-triangles, Multinomial coefficients and Pascal pyramids, Fibonacci Q., Volume 24 (1986), pp. 140-144

[8] J. Cigler A new class of q-Fibonacci polynomials, Electron. J. Comb., Volume 10 (2003) (Article R19)

[9] C. Smith; V.E. Hogatt Generating functions of central values of generalized Pascal triangles, Fibonacci Q., Volume 17 (1979), pp. 58-67

Cited by Sources:

Comments - Policy