[Un q-analogue pour les coefficients bisnomiaux et les suites de Fibonacci généralisées]
Nous proposons une nouvelle variante de q-analogue pour les coefficients binomiaux généralisés appelés coefficients bisnomiaux. Elle est basée sur les suites q-Fibonacci proposées par Cigler.
A new q-analogue of bisnomial coefficients is proposed according to the generalized q-Fibonacci sequence suggested by Cigler's approach.
Accepté le :
Publié le :
Hacène Belbachir 1 ; Athmane Benmezai 2, 3
@article{CRMATH_2014__352_3_167_0, author = {Hac\`ene Belbachir and Athmane Benmezai}, title = {A \protect\emph{q}-analogue for bi\protect\textsuperscript{\protect\emph{s}}nomial coefficients and generalized {Fibonacci} sequences}, journal = {Comptes Rendus. Math\'ematique}, pages = {167--171}, publisher = {Elsevier}, volume = {352}, number = {3}, year = {2014}, doi = {10.1016/j.crma.2014.01.009}, language = {en}, }
TY - JOUR AU - Hacène Belbachir AU - Athmane Benmezai TI - A q-analogue for bisnomial coefficients and generalized Fibonacci sequences JO - Comptes Rendus. Mathématique PY - 2014 SP - 167 EP - 171 VL - 352 IS - 3 PB - Elsevier DO - 10.1016/j.crma.2014.01.009 LA - en ID - CRMATH_2014__352_3_167_0 ER -
Hacène Belbachir; Athmane Benmezai. A q-analogue for bisnomial coefficients and generalized Fibonacci sequences. Comptes Rendus. Mathématique, Volume 352 (2014) no. 3, pp. 167-171. doi : 10.1016/j.crma.2014.01.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.01.009/
[1] Lattice gas generalization of the hard hexagon model III q-trinomials coefficients, J. Stat. Phys., Volume 47 (1987), pp. 297-330
[2] Determining the mode for convolution power of discrete uniform distribution, Probab. Eng. Inf. Sci., Volume 25 (2011) no. 4, pp. 469-475
[3] Linear recurent sequences and powers of a square matrix, Integers, Volume 6 (2006), p. A12
[4] Expansion of Fibonacci and Lucas polynomials: An answer to Prodinger's question, J. Integer Seq., Volume 15 (2012) (Article 12.7.6., 5 pp)
[5] An alternative approach to Cigler's q-Lucas polynomials, J. Appl. Math. Comput., Volume 226 (2014), pp. 691-698
[6] Connection between ordinary multinomials, Fibonacci numbers, Bell polynomials and discrete uniform distribution, Ann. Math. Inform., Volume 35 (2008), pp. 21-30
[7] A note on Pascal T-triangles, Multinomial coefficients and Pascal pyramids, Fibonacci Q., Volume 24 (1986), pp. 140-144
[8] A new class of q-Fibonacci polynomials, Electron. J. Comb., Volume 10 (2003) (Article R19)
[9] Generating functions of central values of generalized Pascal triangles, Fibonacci Q., Volume 17 (1979), pp. 58-67
- Supercongruences concerning bi
nomial coefficients, Rocky Mountain Journal of Mathematics, Volume 54 (2024) no. 4, pp. 943-953 | DOI:10.1216/rmj.2024.54.943 | Zbl:1550.11004 - On the self-convolution of generalized Fibonacci numbers, Quaestiones Mathematicae, Volume 46 (2023) no. 5, pp. 841-854 | DOI:10.2989/16073606.2022.2043949 | Zbl:1542.11025
- A
-analogue of the bi-periodic Fibonacci and Lucas sequences and Rogers-Ramanujan identities, The Ramanujan Journal, Volume 60 (2023) no. 3, pp. 693-728 | DOI:10.1007/s11139-022-00647-4 | Zbl:1523.11028 - Overpartition analogues of
nomial coefficients: basic properties and log-concavity, The Ramanujan Journal, Volume 62 (2023) no. 2, pp. 431-455 | DOI:10.1007/s11139-023-00706-4 | Zbl:1522.05013 - Asymmetric extension of Pascal-Delannoy triangles, Applicable Analysis and Discrete Mathematics, Volume 16 (2022) no. 2, pp. 328-349 | DOI:10.2298/aadm200411028a | Zbl:1513.11067
- Log-concave sequences of bi
nomial coefficients with their analogs and symmetric functions, Indian Journal of Pure Applied Mathematics, Volume 53 (2022) no. 1, pp. 127-137 | DOI:10.1007/s13226-021-00018-7 | Zbl:1483.05005 - Two-Motzkin-like numbers and Stieltjes moment sequences, Mediterranean Journal of Mathematics, Volume 18 (2021) no. 2, p. 18 (Id/No 65) | DOI:10.1007/s00009-021-01700-0 | Zbl:1459.05345
- Log-concavity and LC-positivity for generalized triangles, Journal of Integer Sequences, Volume 23 (2020) no. 5, p. article | Zbl:1480.05015
- Congruence properties for
nomial coefficients and like extended Ram and Kummer theorems under suitable hypothesis, Mediterranean Journal of Mathematics, Volume 17 (2020) no. 1, p. 14 (Id/No 36) | DOI:10.1007/s00009-019-1457-0 | Zbl:1439.11056 - Unimodality and linear recurrences associated with rays in the Delannoy triangle, Turkish Journal of Mathematics, Volume 44 (2020) no. 1, pp. 118-130 | Zbl:1444.05005
- Preserving log-concavity for
-binomial coefficient, Discrete Mathematics, Algorithms and Applications, Volume 11 (2019) no. 2, p. 11 (Id/No 1950017) | DOI:10.1142/s1793830919500174 | Zbl:1410.05010 -
-total positivity and strong -log-convexity for some generalized triangular arrays, The Ramanujan Journal, Volume 49 (2019) no. 2, pp. 341-352 | DOI:10.1007/s11139-018-0102-z | Zbl:1416.05043 - Connection between bi
nomial coefficients and their analogs and symmetric functions, Turkish Journal of Mathematics, Volume 42 (2018) no. 3, pp. 807-818 | DOI:10.3906/mat-1705-27 | Zbl:1424.05006 - A common generalization of convolved generalized Fibonacci and Lucas polynomials and its applications, Applied Mathematics and Computation, Volume 306 (2017), pp. 31-37 | DOI:10.1016/j.amc.2017.02.016 | Zbl:1411.11018
Cité par 14 documents. Sources : zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier