Comptes Rendus
Algebraic geometry/Homological algebra
A case of the deformational Hodge conjecture via a pro Hochschild–Kostant–Rosenberg theorem
Comptes Rendus. Mathématique, Volume 352 (2014) no. 3, pp. 173-177.

Following ideas of Bloch, Esnault, and Kerz, we establish the deformational part of Grothendieck's variational Hodge conjecture for proper, smooth schemes over Kt, where K is an algebraic extension of Q. The main tool is a pro Hochschild–Kostant–Rosenberg theorem for Hochschild homology.

En suivant des idées de Bloch, Esnault et Kerz, nous établissons la partie formelle de la conjecture de Hodge variationnelle pour les schémas propres et lisses sur Kt, où K est une extension algébrique de Q. L'outil principal est un théorème de Hochschild–Kostant–Rosenberg pro pour l'homologie de Hochschild.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2014.01.008

Matthew Morrow 1

1 Hausdorff Center for Mathematics, Endenicher Allee 60, 53115 Bonn, Germany
@article{CRMATH_2014__352_3_173_0,
     author = {Matthew Morrow},
     title = {A case of the deformational {Hodge} conjecture via a pro {Hochschild{\textendash}Kostant{\textendash}Rosenberg} theorem},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {173--177},
     publisher = {Elsevier},
     volume = {352},
     number = {3},
     year = {2014},
     doi = {10.1016/j.crma.2014.01.008},
     language = {en},
}
TY  - JOUR
AU  - Matthew Morrow
TI  - A case of the deformational Hodge conjecture via a pro Hochschild–Kostant–Rosenberg theorem
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 173
EP  - 177
VL  - 352
IS  - 3
PB  - Elsevier
DO  - 10.1016/j.crma.2014.01.008
LA  - en
ID  - CRMATH_2014__352_3_173_0
ER  - 
%0 Journal Article
%A Matthew Morrow
%T A case of the deformational Hodge conjecture via a pro Hochschild–Kostant–Rosenberg theorem
%J Comptes Rendus. Mathématique
%D 2014
%P 173-177
%V 352
%N 3
%I Elsevier
%R 10.1016/j.crma.2014.01.008
%G en
%F CRMATH_2014__352_3_173_0
Matthew Morrow. A case of the deformational Hodge conjecture via a pro Hochschild–Kostant–Rosenberg theorem. Comptes Rendus. Mathématique, Volume 352 (2014) no. 3, pp. 173-177. doi : 10.1016/j.crma.2014.01.008. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.01.008/

[1] A. Beilinson Relative continuous K-theory and cyclic homology, 2013 | arXiv

[2] S. Bloch Semi-regularity and de Rham cohomology, Invent. Math., Volume 17 (1972), pp. 51-66

[3] S. Bloch; H. Esnault; M. Kerz p-adic deformation of algebraic cycle classes, Invent. Math. (2013) | DOI

[4] S. Bloch; H. Esnault; M. Kerz Deformation of algebraic cycle classes in characteristic zero, 2013 | arXiv

[5] G. Cortiñas; C. Haesemeyer; C.A. Weibel Infinitesimal cohomology and the Chern character to negative cyclic homology, Math. Ann., Volume 344 (2009) no. 4, pp. 891-922

[6] T.G. Goodwillie Relative algebraic K-theory and cyclic homology, Ann. of Math. (2), Volume 124 (1986) no. 2, pp. 347-402

[7] A. Grothendieck Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux cohérents. I, Inst. Hautes Études Sci. Publ. Math., Volume 11 (1961), p. 167

[8] A. Krishna An Artin–Rees theorem in K-theory and applications to zero cycles, J. Algebraic Geom., Volume 19 (2010) no. 3, pp. 555-598

[9] J.-L. Loday Cyclic Homology, Grundlehren der Mathematischen Wissenschaften, vol. 301, Springer-Verlag, Berlin, 1992 (Appendix E by María O. Ronco)

[10] M. Morrow, Pro unitality and pro excision in algebraic K-theory and cyclic homology, preprint.

[11] C. Weibel Le caractère de Chern en homologie cyclique périodique, C. R. Acad. Sci. Paris, Ser. I, Volume 317 (1993) no. 9, pp. 867-871

[12] C. Weibel The Hodge filtration and cyclic homology, K-Theory, Volume 12 (1997) no. 2, pp. 145-164

[13] C.A. Weibel An Introduction to Homological Algebra, Cambridge Studies in Advanced Mathematics, vol. 38, Cambridge University Press, Cambridge, 1994

Cited by Sources:

Comments - Policy