This paper deals with a p-Kirchhoff type problem involving the critical Sobolev exponent. Under some suitable assumptions, we show the existence of at least one solution.
On s'intéresse dans cet article au problème de p-Kirchhoff à exposant critique. On montre l'existence d'au moins une solution sous des hypothèses adéquates.
Accepted:
Published online:
Anass Ourraoui 1
@article{CRMATH_2014__352_4_295_0, author = {Anass Ourraoui}, title = {On a {\protect\emph{p}-Kirchhoff} problem involving a critical nonlinearity}, journal = {Comptes Rendus. Math\'ematique}, pages = {295--298}, publisher = {Elsevier}, volume = {352}, number = {4}, year = {2014}, doi = {10.1016/j.crma.2014.01.015}, language = {en}, }
Anass Ourraoui. On a p-Kirchhoff problem involving a critical nonlinearity. Comptes Rendus. Mathématique, Volume 352 (2014) no. 4, pp. 295-298. doi : 10.1016/j.crma.2014.01.015. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.01.015/
[1] On a class of nonlocal -Laplacian Neumann problems, Thai J. Math. (2014) (15 p.), in press
[2] On a class of nonlocal elliptic problems with critical growth, Differ. Equ. Appl., Volume 2 (2010), pp. 409-417
[3] Lifespan estimates for solutions of polyharmonic Kirchhoff systems, M3AS: Math. Models Methods Appl. Sci., Volume 22 (2012), p. 1150009 (36 p.)
[4] On the existence of stationary solutions for higher-order p-Kirchhoff problems, Commun. Contemp. Math. (2014) (33 p.), in press
[5] Kirchhoff systems with dynamic boundary conditions, Nonlinear Anal., Volume 73 (2010), pp. 1952-1965
[6] Global nonexistence for nonlinear Kirchhoff systems, Arch. Ration. Mech. Anal., Volume 196 (2010), pp. 489-516
[7] Some remarks on nonlocal elliptic and parabolic problems, Nonlinear Anal., Volume 30 (1997) no. 7, pp. 4619-4627
[8] Multiplicity of solutions for -polyharmonic elliptic Kirchhoff equations, Nonlinear Anal., Volume 74 (2011), pp. 5962-5974
[9] The Kirchhoff equation for the p-Laplacian, Rend. Semin. Mat. (Torino), Volume 64 (2006), pp. 217-238
[10] On the variational principle, J. Math. Anal. Appl., Volume 47 (1974), pp. 324-353
[11] Compactness and quasilinear problems with critical exponents, Differ. Integral Equ., Volume 18 (2005), pp. 1201-1220
[12] A. Fiscella, E. Valdinoci, A critical Kirchhoff type problem involving a non-local operator, preprint.
[13] Existence of solutions for a p-Kirchhoff type problems with critical exponent, Electron. J. Differ. Equ., Volume 2011 (2011), pp. 1-8
[14] Mechanik, Teubner, Leipzig, 1883
[15] On some questions in boundary value problems of mathematical physics, Rio de Janeiro, 1977 (G.M. De La Penha; L.A.J. Medeiros, eds.) (North-Holland Mathematics Studies), Volume vol. 30 (1978), pp. 284-346
[16] Remarks on an elliptic equation of Kirchhoff type, Nonlinear Anal., Volume 63 (2005), pp. 1967-1977
Cited by Sources:
Comments - Policy