Comptes Rendus
Complex analysis/Functional analysis
Disjoint mixing composition operators on the Hardy space in the unit ball
Comptes Rendus. Mathématique, Volume 352 (2014) no. 4, pp. 289-294.

We characterize disjoint mixing and disjoint hypercyclicity of finite many composition operators acting on the Hardy space on the unit ball.

Nous caractérisons les propriétés de mélange disjoint et d'hypercyclicité disjointe d'une famille finie d'opérateurs de composition agissant sur l'espace de Hardy de la boule unité.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2014.01.017

Yu-Xia Liang 1; Ze-Hua Zhou 1, 2

1 Department of Mathematics, Tianjin University, Tianjin 300072, PR China
2 Center for Applied Mathematics, Tianjin University, Tianjin 300072, PR China
@article{CRMATH_2014__352_4_289_0,
     author = {Yu-Xia Liang and Ze-Hua Zhou},
     title = {Disjoint mixing composition operators on the {Hardy} space in the unit ball},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {289--294},
     publisher = {Elsevier},
     volume = {352},
     number = {4},
     year = {2014},
     doi = {10.1016/j.crma.2014.01.017},
     language = {en},
}
TY  - JOUR
AU  - Yu-Xia Liang
AU  - Ze-Hua Zhou
TI  - Disjoint mixing composition operators on the Hardy space in the unit ball
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 289
EP  - 294
VL  - 352
IS  - 4
PB  - Elsevier
DO  - 10.1016/j.crma.2014.01.017
LA  - en
ID  - CRMATH_2014__352_4_289_0
ER  - 
%0 Journal Article
%A Yu-Xia Liang
%A Ze-Hua Zhou
%T Disjoint mixing composition operators on the Hardy space in the unit ball
%J Comptes Rendus. Mathématique
%D 2014
%P 289-294
%V 352
%N 4
%I Elsevier
%R 10.1016/j.crma.2014.01.017
%G en
%F CRMATH_2014__352_4_289_0
Yu-Xia Liang; Ze-Hua Zhou. Disjoint mixing composition operators on the Hardy space in the unit ball. Comptes Rendus. Mathématique, Volume 352 (2014) no. 4, pp. 289-294. doi : 10.1016/j.crma.2014.01.017. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.01.017/

[1] F. Bayart A class of linear fractional maps of the ball and their composition operators, Adv. Math., Volume 209 (2007), pp. 649-665

[2] F. Bayart; E. Matheron Dynamics of Linear Operators, Cambridge University Press, 2009

[3] T. Bermúdez; A. Bonilla; A. Peris On hypercyclicity and supercyclicity criteria, Bull. Austral. Math. Soc., Volume 70 (2004), pp. 45-54

[4] L. Bernal-González Disjoint hypercyclic operators, Studia Math., Volume 182 (2007) no. 2, pp. 113-131

[5] J. Bès; Ö. Martin Compositional disjoint hypercyclicity equals disjoint supercyclicity, Houston J. Math., Volume 38 (2012), pp. 1149-1163

[6] J. Bès; Ö. Martin; A. Peris Disjoint hypercyclic linear fractional composition operators, J. Math. Appl., Volume 381 (2011), pp. 843-856

[7] J. Bès; A. Peris Disjointness in hypercyclicity, J. Math. Anal. Appl., Volume 336 (2007), pp. 297-315

[8] J. Bès; Ö. Martin; A. Peris; S. Shkarin Disjoint mixing operators, J. Funct. Anal., Volume 263 (2012), pp. 1283-1322

[9] C. Bisi; F. Bracci Linear fractional maps of the unit ball: A geometric study, Adv. Math., Volume 167 (2002), pp. 265-287

[10] P. Bourdon; J. Shapiro Cyclic phenomena for composition operators, Mem. Amer. Math. Soc., Volume 125 (1997), p. 596

[11] X. Chen; G. Cao; K. Guo Inner functions and cyclic composition operators on H2(BN), J. Math. Anal. Appl., Volume 250 (2000), pp. 660-669

[12] R. Chen; Z. Zhou Hypercyclicity of weighted composition operators on the unit ball of CN, J. Korean Math. Soc., Volume 48 (2011) no. 5, pp. 969-984

[13] C.C. Cowen; B.D. MacCluer Composition Operators on Spaces of Analytic Functions, CRC Press, Boca Raton, FL, 1995

[14] H. Furstenberg Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation, Math. Systems Theory, Volume 1 (1967), pp. 1-49

[15] G. Godefroy; J. Shapiro Operators with dense, invariant, cyclic vector manifolds, J. Funct. Anal., Volume 98 (1991), pp. 229-269

[16] K.-G. Grosse-Erdmann; A. Peris Manguillot Linear Chaos, Springer, New York, 2011

[17] L. Jiang; C. Ouyang Cyclic behavior of linear fractional composition operators in the unit ball of CN, J. Math. Anal. Appl., Volume 341 (2008), pp. 601-612

[18] N. Levenberg Approximation in CN, Surv. Approx. Theory, Volume 92 (2006), pp. 92-140

[19] B.D. MacCluer Iterates of holomorphic self-maps of the unit ball in CN, Michigan Math. J., Volume 30 (1983), pp. 97-106

[20] Ö. Martin Disjoint hypercyclic and supercyclic composition operators, Bowling Green State University, 2011 (PhD thesis)

[21] H. Salas Dual disjoint hypercyclic operators, J. Math. Anal. Appl., Volume 374 (2011), pp. 106-117

[22] J. Shapiro Composition Operators and Classical Function Theory, Springer-Verlag, 1993

[23] S. Shkarin A short proof of existence of disjoint hypercyclic operators, J. Math. Anal. Appl., Volume 367 (2010), pp. 713-715

Cited by Sources:

This work was supported in part by the National Natural Science Foundation of China (Grant Nos. 11371276, 11301373, 11201331).

Comments - Policy