We characterize disjoint mixing and disjoint hypercyclicity of finite many composition operators acting on the Hardy space on the unit ball.
Nous caractérisons les propriétés de mélange disjoint et d'hypercyclicité disjointe d'une famille finie d'opérateurs de composition agissant sur l'espace de Hardy de la boule unité.
Accepted:
Published online:
Yu-Xia Liang 1; Ze-Hua Zhou 1, 2
@article{CRMATH_2014__352_4_289_0, author = {Yu-Xia Liang and Ze-Hua Zhou}, title = {Disjoint mixing composition operators on the {Hardy} space in the unit ball}, journal = {Comptes Rendus. Math\'ematique}, pages = {289--294}, publisher = {Elsevier}, volume = {352}, number = {4}, year = {2014}, doi = {10.1016/j.crma.2014.01.017}, language = {en}, }
Yu-Xia Liang; Ze-Hua Zhou. Disjoint mixing composition operators on the Hardy space in the unit ball. Comptes Rendus. Mathématique, Volume 352 (2014) no. 4, pp. 289-294. doi : 10.1016/j.crma.2014.01.017. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.01.017/
[1] A class of linear fractional maps of the ball and their composition operators, Adv. Math., Volume 209 (2007), pp. 649-665
[2] Dynamics of Linear Operators, Cambridge University Press, 2009
[3] On hypercyclicity and supercyclicity criteria, Bull. Austral. Math. Soc., Volume 70 (2004), pp. 45-54
[4] Disjoint hypercyclic operators, Studia Math., Volume 182 (2007) no. 2, pp. 113-131
[5] Compositional disjoint hypercyclicity equals disjoint supercyclicity, Houston J. Math., Volume 38 (2012), pp. 1149-1163
[6] Disjoint hypercyclic linear fractional composition operators, J. Math. Appl., Volume 381 (2011), pp. 843-856
[7] Disjointness in hypercyclicity, J. Math. Anal. Appl., Volume 336 (2007), pp. 297-315
[8] Disjoint mixing operators, J. Funct. Anal., Volume 263 (2012), pp. 1283-1322
[9] Linear fractional maps of the unit ball: A geometric study, Adv. Math., Volume 167 (2002), pp. 265-287
[10] Cyclic phenomena for composition operators, Mem. Amer. Math. Soc., Volume 125 (1997), p. 596
[11] Inner functions and cyclic composition operators on , J. Math. Anal. Appl., Volume 250 (2000), pp. 660-669
[12] Hypercyclicity of weighted composition operators on the unit ball of , J. Korean Math. Soc., Volume 48 (2011) no. 5, pp. 969-984
[13] Composition Operators on Spaces of Analytic Functions, CRC Press, Boca Raton, FL, 1995
[14] Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation, Math. Systems Theory, Volume 1 (1967), pp. 1-49
[15] Operators with dense, invariant, cyclic vector manifolds, J. Funct. Anal., Volume 98 (1991), pp. 229-269
[16] Linear Chaos, Springer, New York, 2011
[17] Cyclic behavior of linear fractional composition operators in the unit ball of , J. Math. Anal. Appl., Volume 341 (2008), pp. 601-612
[18] Approximation in , Surv. Approx. Theory, Volume 92 (2006), pp. 92-140
[19] Iterates of holomorphic self-maps of the unit ball in , Michigan Math. J., Volume 30 (1983), pp. 97-106
[20] Disjoint hypercyclic and supercyclic composition operators, Bowling Green State University, 2011 (PhD thesis)
[21] Dual disjoint hypercyclic operators, J. Math. Anal. Appl., Volume 374 (2011), pp. 106-117
[22] Composition Operators and Classical Function Theory, Springer-Verlag, 1993
[23] A short proof of existence of disjoint hypercyclic operators, J. Math. Anal. Appl., Volume 367 (2010), pp. 713-715
Cited by Sources:
☆ This work was supported in part by the National Natural Science Foundation of China (Grant Nos. 11371276, 11301373, 11201331).
Comments - Policy