We introduce transitory canard cycles for slow–fast vector fields in the plane. Such cycles separate “canards without head” and “canards with head”, like for example in the Van der Pol equation. We obtain optimal upper bounds on the number of periodic orbits that can appear near the cycle under whatever condition on the related slow divergence integral I, including the challenging case .
On introduit des cycles canard transitoires pour les champs de vecteurs lents–rapides du plan. De tels cycles font la transition entre des « canards sans tête » et des « canards avec tête », comme par exemple dans l'équation de Van der Pol. On obtient des bornes supérieures optimales pour le nombre des orbites périodiques qui peuvent apparaître près du cycle canard transitoire, quelles que soient les conditions sur l'intégrale de divergence lente I associée, ce qui inclut le cas difficile .
Accepted:
Published online:
Peter De Maesschalck 1; Freddy Dumortier 1; Robert Roussarie 2
@article{CRMATH_2014__352_4_317_0, author = {Peter De Maesschalck and Freddy Dumortier and Robert Roussarie}, title = {Canard cycle transition at a slow{\textendash}fast passage through a jump point}, journal = {Comptes Rendus. Math\'ematique}, pages = {317--320}, publisher = {Elsevier}, volume = {352}, number = {4}, year = {2014}, doi = {10.1016/j.crma.2014.02.008}, language = {en}, }
TY - JOUR AU - Peter De Maesschalck AU - Freddy Dumortier AU - Robert Roussarie TI - Canard cycle transition at a slow–fast passage through a jump point JO - Comptes Rendus. Mathématique PY - 2014 SP - 317 EP - 320 VL - 352 IS - 4 PB - Elsevier DO - 10.1016/j.crma.2014.02.008 LA - en ID - CRMATH_2014__352_4_317_0 ER -
Peter De Maesschalck; Freddy Dumortier; Robert Roussarie. Canard cycle transition at a slow–fast passage through a jump point. Comptes Rendus. Mathématique, Volume 352 (2014) no. 4, pp. 317-320. doi : 10.1016/j.crma.2014.02.008. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.02.008/
[1] Équations différentielles: relation entrée–sortie, C. R. Acad. Sci. Paris, Ser. I, Volume 293 (1981) no. 5, pp. 293-296
[2] P. De Maesschalck, F. Dumortier, R. Roussarie, Canard Cycles from Birth to Transition, in preparation.
[3] Cyclicity of common slow–fast cycles, Indag. Math. (N.S.), Volume 22 (2011) no. 3–4, pp. 165-206
[4] Canard-cycle transition at a fast–fast passage through a jump point, C. R. Acad. Sci. Paris, Ser. I, Volume 352 (2014) no. 1, pp. 27-30
[5] Slow divergence integral and balanced canard solutions, Qual. Theory Dyn. Syst., Volume 10 (2011) no. 1, pp. 65-85
[6] Canard cycles and center manifolds, Mem. Amer. Math. Soc., Volume 121 (1996) no. 577 (x+100. With an appendix by Li Chengzhi)
[7] Multiple canard cycles in generalized Liénard equations, J. Differential Equations, Volume 174 (2001) no. 1, pp. 1-29
[8] Relaxation oscillation and canard explosion, J. Differential Equations, Volume 174 (2001) no. 2, pp. 312-368
Cited by Sources:
Comments - Policy