Comptes Rendus
Partial differential equations
Symmetry of components and Liouville theorems for noncooperative elliptic systems on the half-space
Comptes Rendus. Mathématique, Volume 352 (2014) no. 4, pp. 321-325.

We study classical solutions of elliptic systems in the half-space and provide sufficient conditions for having symmetry (or proportionality) of components, i.e. u=Kv with K>0, which then reduces the system to the scalar case. Under a natural structure condition on the nonlinearities, we show that solutions with sublinear growth, hence in particular bounded solutions, are symmetric. Noncooperative, nonvariational systems as well as supercritical nonlinearities can be covered. We also give an instance of our proportionality results without growth restriction on the solutions. As a consequence, we obtain new Liouville-type theorems in the half-space, as well as a priori estimates and existence results for related Dirichlet problems. Our proofs are based on a maximum principle, on the properties of suitable half-spherical means, on a rigidity result for superharmonic functions and on nonexistence of solution for scalar inequalities on the half-space.

Nous étudions les solutions classiques de systèmes elliptiques dans le demi-espace et donnons des conditions suffisantes assurant la symétrie (ou la proportionnalité) des composantes, i.e. u=Kv avec K>0, ce qui réduit alors le système au cas scalaire. Sous une condition naturelle de structure sur les non-linéarités, nous montrons que les solutions à croissance sous-linéaire, donc en particulier les solutions bornées, sont symétriques. Ce résultat couvre le cas de systèmes non coopératifs, non variationnels et éventuellement sur-critiques. Nous obtenons aussi des résultats de proportionnalité sans hypothèse de croissance sur les solutions. Comme conséquence, nous obtenons de nouveaux théorèmes de type Liouville dans le demi-espace, ainsi que des estimations a priori et des résultats d'existence pour des problèmes de Dirichlet associés. Nos preuves reposent sur un principe du maximum, sur les propriétés de moyennes semi-sphériques, sur un résultat de rigidité pour les fonctions surharmoniques et sur la nonexistence de solution pour des inéquations scalaires dans le demi-espace.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2013.10.033

Alexandre Montaru 1; Philippe Souplet 1

1 Université Paris-13, Sorbonne Paris Cité, LAGA, CNRS, UMR 7539, 93430 Villetaneuse, France
@article{CRMATH_2014__352_4_321_0,
     author = {Alexandre Montaru and Philippe Souplet},
     title = {Symmetry of components and {Liouville} theorems for noncooperative elliptic systems on the half-space},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {321--325},
     publisher = {Elsevier},
     volume = {352},
     number = {4},
     year = {2014},
     doi = {10.1016/j.crma.2013.10.033},
     language = {en},
}
TY  - JOUR
AU  - Alexandre Montaru
AU  - Philippe Souplet
TI  - Symmetry of components and Liouville theorems for noncooperative elliptic systems on the half-space
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 321
EP  - 325
VL  - 352
IS  - 4
PB  - Elsevier
DO  - 10.1016/j.crma.2013.10.033
LA  - en
ID  - CRMATH_2014__352_4_321_0
ER  - 
%0 Journal Article
%A Alexandre Montaru
%A Philippe Souplet
%T Symmetry of components and Liouville theorems for noncooperative elliptic systems on the half-space
%J Comptes Rendus. Mathématique
%D 2014
%P 321-325
%V 352
%N 4
%I Elsevier
%R 10.1016/j.crma.2013.10.033
%G en
%F CRMATH_2014__352_4_321_0
Alexandre Montaru; Philippe Souplet. Symmetry of components and Liouville theorems for noncooperative elliptic systems on the half-space. Comptes Rendus. Mathématique, Volume 352 (2014) no. 4, pp. 321-325. doi : 10.1016/j.crma.2013.10.033. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.10.033/

[1] C.O. Alves; D.G. de Figueiredo Nonvariational elliptic systems, Temuco, 1999 (Discrete Contin. Dyn. Syst.), Volume 8 (2002) no. 2, pp. 289-302

[2] P. Clément; R. Manásevich; E. Mitidieri Positive solutions for a quasilinear system via blow up, Commun. Partial Differ. Equ., Volume 18 (1993), pp. 2071-2106

[3] N. Dancer; J.-C. Wei; T. Weth A priori bounds versus multiple existence of positive solutions for a nonlinear Schrödinger system, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 27 (2010), pp. 953-969

[4] M. Delgado; J. López-Gómez; A. Suárez On the symbiotic Lotka–Volterra model with diffusion and transport effects, J. Differ. Equ., Volume 160 (2000), pp. 175-262

[5] L. Desvillettes; K. Fellner Exponential decay toward equilibrium via entropy methods for reaction–diffusion equations, J. Math. Anal. Appl., Volume 319 (2006), pp. 157-176

[6] S.J. Gardiner Half-spherical means and boundary behaviour of subharmonic functions in half-spaces, Hiroshima Math. J., Volume 13 (1983) no. 2, pp. 339-348

[7] B. Gidas; J. Spruck A priori bounds for positive solutions of nonlinear elliptic equations, Commun. Partial Differ. Equ., Volume 6 (1981) no. 8, pp. 883-901

[8] Y.Y. Li, C. Lin, L. Nirenberg, Nonexistence results to cooperative systems with supercritical exponents in R+n, preprint, 2013.

[9] T.-C. Lin; J.-C. Wei Symbiotic bright solitary wave solutions of coupled nonlinear Schrödinger equations, Nonlinearity, Volume 19 (2006), pp. 2755-2773

[10] Y. Lou Necessary and sufficient condition for the existence of positive solutions of certain cooperative system, Nonlinear Anal., Volume 26 (1996), pp. 1079-1095

[11] E. Mitidieri; S.I. Pohozaev A priori estimates and the absence of solutions of nonlinear partial differential equations and inequalities, Tr. Mat. Inst. Steklova, Volume 234 (2001), pp. 1-384 (in Russian); translation in: Proc. Steklov Inst. Math. 3 (234) (2001) 1–362

[12] A. Montaru; B. Sirakov; P. Souplet Proportionality of components, Liouville theorems and a priori estimates for noncooperative elliptic systems (Arch. Ration. Mech. Anal. to appear) | DOI

[13] P. Quittner; P. Souplet Symmetry of components for semilinear elliptic systems, SIAM J. Math. Anal., Volume 44 (2012), pp. 2545-2559

Cited by Sources:

Comments - Policy