Comptes Rendus
Differential geometry
A note on magnetic curves on S2n+1
Comptes Rendus. Mathématique, Volume 352 (2014) no. 5, pp. 447-449.

We prove that a normal magnetic curve on the Sasakian sphere S2n+1 lies on a totally geodesic sphere S3, and that the Sasakian structure on S3 is that induced from S2n+1.

Nous montrons qu'une courbe magnétique normale sur la sphère sasakienne S2n+1 se trouve sur une sphère totalement géodésique S3, et que la structure sasakienne sur S3 est celle qui est induite de S2n+1.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2014.03.006

Marian Ioan Munteanu 1; Ana Irina Nistor 2

1 University ‘Al.I. Cuza’ of Iaşi, Faculty of Mathematics, Bd. Carol I, no. 11, 700506 Iaşi, Romania
2 ‘Gheorghe Asachi’ Technical University of Iaşi, Department of Mathematics and Informatics, Bd. Carol I, no. 11, 700506 Iaşi, Romania
@article{CRMATH_2014__352_5_447_0,
     author = {Marian Ioan Munteanu and Ana Irina Nistor},
     title = {A note on magnetic curves on $ {\mathbb{S}}^{2n+1}$},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {447--449},
     publisher = {Elsevier},
     volume = {352},
     number = {5},
     year = {2014},
     doi = {10.1016/j.crma.2014.03.006},
     language = {en},
}
TY  - JOUR
AU  - Marian Ioan Munteanu
AU  - Ana Irina Nistor
TI  - A note on magnetic curves on $ {\mathbb{S}}^{2n+1}$
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 447
EP  - 449
VL  - 352
IS  - 5
PB  - Elsevier
DO  - 10.1016/j.crma.2014.03.006
LA  - en
ID  - CRMATH_2014__352_5_447_0
ER  - 
%0 Journal Article
%A Marian Ioan Munteanu
%A Ana Irina Nistor
%T A note on magnetic curves on $ {\mathbb{S}}^{2n+1}$
%J Comptes Rendus. Mathématique
%D 2014
%P 447-449
%V 352
%N 5
%I Elsevier
%R 10.1016/j.crma.2014.03.006
%G en
%F CRMATH_2014__352_5_447_0
Marian Ioan Munteanu; Ana Irina Nistor. A note on magnetic curves on $ {\mathbb{S}}^{2n+1}$. Comptes Rendus. Mathématique, Volume 352 (2014) no. 5, pp. 447-449. doi : 10.1016/j.crma.2014.03.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.03.006/

[1] M. Barros; J.L. Cabrerizo; M. Fernández; A. Romero Magnetic vortex filament flows, J. Math. Phys., Volume 48 (2007) no. 8, p. 082904

[2] J.L. Cabrerizo; M. Fernández; J.S. Gómez The contact magnetic flow in 3D Sasakian manifolds, J. Phys. A, Volume 42 (2009) no. 19, p. 195201

[3] J.L. Cabrerizo; M. Fernández; J.S. Gómez On the existence of almost contact structure and the contact magnetic field, Acta Math. Hungar., Volume 125 (2009) no. 1–2, pp. 191-199

[4] S.L. Druţă-Romaniuc, J. Inoguchi, M.I. Munteanu, A.I. Nistor, Magnetic curves in Sasakian and cosymplectic manifolds, preprint, 2013.

[5] M. Harada On Sasakian submanifolds, Tohoku Math. J., Volume 25 (1973) no. 2, pp. 103-109 (Collection of articles dedicated to Shigeo Sasaki on his sixtieth birthday)

Cited by Sources:

Comments - Policy