In this note, a statistic on Young tableaux is defined, which encodes data needed for the Casselman–Shalika formula.
Dans cette note est définie une statistique sur les tableaux de Young, encodant les données nécessaires à la formule de Casselman–Shalika.
Accepted:
Published online:
Ben Salisbury 1
@article{CRMATH_2014__352_5_367_0, author = {Ben Salisbury}, title = {The flush statistic on semistandard {Young} tableaux}, journal = {Comptes Rendus. Math\'ematique}, pages = {367--371}, publisher = {Elsevier}, volume = {352}, number = {5}, year = {2014}, doi = {10.1016/j.crma.2014.03.007}, language = {en}, }
Ben Salisbury. The flush statistic on semistandard Young tableaux. Comptes Rendus. Mathématique, Volume 352 (2014) no. 5, pp. 367-371. doi : 10.1016/j.crma.2014.03.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.03.007/
[1] Weyl group multiple Dirichlet series of type C, Pac. J. Math., Volume 254 (2011) no. 1, pp. 11-46
[2] A crystal definition for symplectic multiple Dirichlet series, Multiple Dirichlet Series, L-Functions and Automorphic Forms, Prog. Math., vol. 300, Birkhäuser/Springer, New York, 2012, pp. 37-63
[3] Weyl group multiple Dirichlet series, Eisenstein series and crystal bases, Ann. Math. (2), Volume 173 (2011) no. 1, pp. 1081-1120
[4] Weyl Group Multiple Dirichlet Series: Type A Combinatorial Theory, Ann. Math. Stud., vol. AM-175, Princeton Univ. Press, New Jersey, 2011
[5] Integration on p-adic groups and crystal bases, Proc. Am. Math. Soc., Volume 138 (2010) no. 5, pp. 1595-1605
[6] Littelmann patterns and Weyl group multiple Dirichlet series of type D, Multiple Dirichlet Series, L-Functions and Automorphic Forms, Prog. Math., vol. 300, Birkhäuser/Springer, New York, 2012, pp. 119-130
[7] Eisenstein series on covers of odd orthogonal groups | arXiv
[8] Crystal graphs, Tokuyama's theorem, and the Gindikin–Karpelevič formula for | arXiv
[9] Introduction to Quantum Groups and Crystal Bases, Grad. Stud. Math., vol. 42, American Mathematical Society, Providence, RI, 2002
[10] Young tableaux and crystal for finite simple Lie algebras, J. Algebra, Volume 320 (2008), pp. 3680-3693
[11] On crystal bases, Banff, AB, 1994 (CMS Conf. Proc.), Volume vol. 16, Amer. Math. Soc., Providence, RI (1995), pp. 155-197
[12] Representation theory of p-adic groups and canonical bases, Adv. Math., Volume 227 (2011) no. 2, pp. 945-961
[13] Quantum affine algebras, canonical bases, and q-deformation of arithmetical functions, Pac. J. Math., Volume 255 (2012) no. 2, pp. 393-415
[14] Combinatorics of the Casselman–Shalika formula in type A, Proc. Am. Math. Soc. (2014) (in press) | arXiv | DOI
[15] A combinatorial description of the Gindikin–Karpelevich formula in type A, J. Comb. Theory, Ser. A, Volume 119 (2012), pp. 1081-1094
[16] Young tableaux, canonical bases, and the Gindikin–Karpelevich formula, J. Korean Math. Soc., Volume 51 (2014) no. 2, pp. 289-309
[17] A generating function of strict Gelfand patterns and some formulas on characters of general linear groups, J. Math. Soc. Jpn., Volume 40 (1988) no. 4, pp. 671-685
Cited by Sources:
Comments - Policy