A vertex–edge dominating set of a graph G is a set D of vertices of G such that every edge of G is incident with a vertex of D or a vertex adjacent to a vertex of D. The vertex–edge domination number of a graph G, denoted by , is the minimum cardinality of a vertex–edge dominating set of G. We prove that for every tree T of order with l leaves and s support vertices, we have , and we characterize the trees attaining each of the bounds.
Un ensemble sommet–arête dominant d'un graphe G est un ensemble D de sommets de G tel que chaque arête de G soit incidente à un sommet de D ou à un sommet adjacent à un sommet de D. Le nombre de domination sommet–arête d'un graphe G, noté , est le cardinal minimum d'un ensemble sommet–arête dominant de G. Nous prouvons que, pour chaque arbre T d'ordre avec l feuilles et des sommets s de soutien, que nous avons , et nous caractérisons les arbres atteignant chacune des limites.
Accepted:
Published online:
Balakrishna Krishnakumari 1; Yanamandram B. Venkatakrishnan 1; Marcin Krzywkowski 2, 3
@article{CRMATH_2014__352_5_363_0, author = {Balakrishna Krishnakumari and Yanamandram B. Venkatakrishnan and Marcin Krzywkowski}, title = {Bounds on the vertex{\textendash}edge domination number of a tree}, journal = {Comptes Rendus. Math\'ematique}, pages = {363--366}, publisher = {Elsevier}, volume = {352}, number = {5}, year = {2014}, doi = {10.1016/j.crma.2014.03.017}, language = {en}, }
TY - JOUR AU - Balakrishna Krishnakumari AU - Yanamandram B. Venkatakrishnan AU - Marcin Krzywkowski TI - Bounds on the vertex–edge domination number of a tree JO - Comptes Rendus. Mathématique PY - 2014 SP - 363 EP - 366 VL - 352 IS - 5 PB - Elsevier DO - 10.1016/j.crma.2014.03.017 LA - en ID - CRMATH_2014__352_5_363_0 ER -
Balakrishna Krishnakumari; Yanamandram B. Venkatakrishnan; Marcin Krzywkowski. Bounds on the vertex–edge domination number of a tree. Comptes Rendus. Mathématique, Volume 352 (2014) no. 5, pp. 363-366. doi : 10.1016/j.crma.2014.03.017. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.03.017/
[1] A note on the total domination number of a tree, J. Comb. Math. Comb. Comput., Volume 58 (2006), pp. 189-193
[2] Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998
[3] Domination in Graphs: Advanced Topics (T. Haynes; S. Hedetniemi; P. Slater, eds.), Marcel Dekker, New York, 1998
[4] A lower bound on the total outer-independent domination number of a tree, C. R. Acad. Sci. Paris, Ser. I, Volume 349 (2011), pp. 7-9
[5] Lower bound on the domination number of a tree, Discuss. Math., Graph Theory, Volume 24 (2004), pp. 165-169
[6] Vertex–edge domination, Util. Math., Volume 81 (2010), pp. 193-213
[7] Theoretical and algorithmic results on domination and connectivity, Clemson University, 1986 (PhD thesis)
Cited by Sources:
Comments - Policy