Some new results on metric ultraproducts of finite simple groups are presented. Suppose that G is such a group, defined in terms of a non-principal ultrafilter ω on and a sequence of finite simple groups, and that G is neither finite nor a Chevalley group over an infinite field. Then G is isomorphic to an ultraproduct of alternating groups or to an ultraproduct of finite simple classical groups. The isomorphism type of G determines which of these two cases arises, and, in the latter case, the ω-limit of the characteristics of the groups . Moreover, G is a complete path-connected group with respect to the natural metric on G.
Nous présentons de nouveaux résultats relatifs aux ultraproduits des groupes finis simples. Soit G un tel groupe, associé à un ultrafiltre ω sur et une suite de groupes finis simples, et supposons que G n'est ni fini ni un groupe de Chevalley sur un corps infini. Un tel groupe G est alors isomorphe, soit à un ultraproduit de groupes alternés, soit à un ultraproduit de groupes finis simples classiques. La classe d'isomorphisme de G nous permet de distinguer ces deux cas et, dans le second cas, de déterminer la ω-limite des charactéristiques des groupes . Le groupe G est, de plus, complet et connexe par arcs pour la métrique naturelle sur G.
Accepted:
Published online:
Andreas Thom 1; John S. Wilson 2
@article{CRMATH_2014__352_6_463_0, author = {Andreas Thom and John S. Wilson}, title = {Metric ultraproducts of finite simple groups}, journal = {Comptes Rendus. Math\'ematique}, pages = {463--466}, publisher = {Elsevier}, volume = {352}, number = {6}, year = {2014}, doi = {10.1016/j.crma.2014.03.015}, language = {en}, }
Andreas Thom; John S. Wilson. Metric ultraproducts of finite simple groups. Comptes Rendus. Mathématique, Volume 352 (2014) no. 6, pp. 463-466. doi : 10.1016/j.crma.2014.03.015. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.03.015/
[1] Normal subgroups of nonstandard symmetric and alternating groups, Arch. Math. Log., Volume 46 (2007) no. 2, pp. 107-121
[2] Model theory for metric structures, Model Theory with Applications to Algebra and Analysis, vol. 2, Lond. Math. Soc. Lect. Note Ser., vol. 350, Cambridge University Press, Cambridge, 2008, pp. 315-427
[3] Classification of injective factors. Cases , , , , Ann. of Math. (2), Volume 104 (1976) no. 1, pp. 73-115
[4] Applications des ultraproduits à l'étude des espaces et des algèbres de Banach, Stud. Math., Volume 41 (1972), pp. 315-334
[5] Hyperlinearity, essentially free actions and -invariants. The sofic property, Math. Ann., Volume 332 (2005) no. 2, pp. 421-441
[6] Endomorphisms of symbolic algebraic varieties, J. Eur. Math. Soc., Volume 1 (1999) no. 2, pp. 109-197
[7] Hyperlinear and sofic groups: a brief guide, Bull. Symb. Log., Volume 14 (2008) no. 4, pp. 449-480
[8] Ultraproducts and Chevalley groups, Arch. Math. Log., Volume 38 (1999), pp. 355-372
[9] On the lattice of normal subgroups in ultraproducts of compact simple groups, Proc. Lond. Math. Soc. (3), Volume 108 (2014), pp. 73-102
[10] Limites d'espaces métriques et ultraproduits, Méthodes et analyse non standard, Cahiers Centre Logique, vol. 9, Acad.-Bruylant, Louvain-la-Neuve, 1996, pp. 141-168
[11] Sofic groups and dynamical systems, Mumbai, 1999 (Sankhyā, Ser. A), Volume 62 (2000) no. 3, pp. 350-359
[12] On simple pseudo finite groups, J. Lond. Math. Soc. (2), Volume 51 (1995), pp. 471-490
[13] First-order group theory, Ravello, 1994, de Gruyter, Berlin (1996), pp. 301-314
Cited by Sources:
Comments - Policy