In this note, we answer an open problem posed in M. Tărnăceanu (2010) [5], and obtain that the generalized quaternion 2-groups are the unique finite noncyclic groups whose posets of conjugacy classes of cyclic subgroups have breaking points.
Répondant à une question de M. Tărnăceanu (2010) [5], nous montrons que les 2-groupes de quaternions généralisés sont les seuls groupes finis non cycliques dont le treillis des classes de conjugaison de sous-groupes cycliques admet un point clivant.
Accepted:
Published online:
Yanheng Chen 1, 2; Guiyun Chen 1
@article{CRMATH_2014__352_6_459_0, author = {Yanheng Chen and Guiyun Chen}, title = {A note on a characterization of generalized quaternion 2-groups}, journal = {Comptes Rendus. Math\'ematique}, pages = {459--461}, publisher = {Elsevier}, volume = {352}, number = {6}, year = {2014}, doi = {10.1016/j.crma.2014.04.009}, language = {en}, }
Yanheng Chen; Guiyun Chen. A note on a characterization of generalized quaternion 2-groups. Comptes Rendus. Mathématique, Volume 352 (2014) no. 6, pp. 459-461. doi : 10.1016/j.crma.2014.04.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.04.009/
[1] Breaking points in subgroup lattices (C.M. Campbell; E.F. Robertson; G.C. Smith, eds.), Proceedings of Groups St. Andrews 2001 in Oxford, vol. 1, Cambridge University Press, Cambridge, UK, 2003, pp. 59-62
[2] Relative Brauer groups. II, J. Reine Angew. Math., Volume 328 (1980), pp. 39-57
[3] Endliche Gruppen, I, Springer-Verlag, Berlin, Heidelberg, New York, 1967
[4] Groups Determined by Posets of Subgroups, Ed. Matrix Rom, Bucuresti, Romania, 2006
[5] A characterization of generalized quaternion 2-groups, C. R. Acad. Sci. Paris, Ser. I, Volume 348 (2010), pp. 731-733
Cited by Sources:
☆ This work was supported by National Natural Science Foundation of China (Grant Nos. 11271301, 11001226), and the Fundamental Research Funds for the Central Universities.
Comments - Policy